[1] Mirkin S M. Expandable DNA repeats and human disease[J]. Nature, 2007, 447: 932-940.
[2] Mankodi A, Logigian E, Callahan L, et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat[J]. Science, 2000, 289: 1 769-1 773.
[3] Liquori C L, Ricker K, Moseley M L, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9[J]. Science, 2001, 293: 864-867.
[4] Mahadevan M, Tsilfidis C, Sabourin L, et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′untranslated region of the gene[J]. Science, 1992, 255: 1 253-1 255.
[5] Brook J D, McCurrach M E, Harley H G, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member[J]. Cell, 1992, 68: 799-808.
[6] Cho D H, Tapscott S J. Myotonic dystrophy: emerging mechanisms for DM1 and DM2[J]. Biochim Biophys Acta, 2007, 1772: 195-204.
[7] Lee J E, Cooper T A. Pathogenic mechanisms of myotonic dystrophy[J]. Biochem Soc T, 2009, 37: 1 281-1 286.
[8] Ranum L P, Day J W. Myotonic dystrophy: RNA pathogenesis comes into focus[J]. Am J Hum Genet, 2004, 74: 793-804.
[9] Voineagu I, Freudenreich C H, Mirkin S M. Checkpoint responses to unusual structures formed by DNA repeats[J]. Mol Carcinogen, 2009, 48: 309-318.
[10] Chi L M, Lam S L. Structural roles of CTG repeats in slippage expansion during DNA replication[J]. Nucleic Acids Res, 2005, 33: 1 604-1 617.
[11] Lam S L, Wu F, Yang H, et al. The origin of genetic instability in CCTG repeats[J]. Nucleic Acids Res, 2011, 39: 6 260-6 268.
[12] Ohshima K, Wells R D. Hairpin formation during DNA synthesis primer realignment in vitro in triplet repeat sequences from human hereditary disease genes[J]. J Biol Chem, 1997, 272: 16 798-16 806.
[13] Hartenstine M J, Goodman M F, Petruska J. Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase[J]. J Biol Chem, 2000, 275: 18 382-18 390.
[14] Petruska J, Arnheim N, Goodman M F. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases[J]. Nucleic Acids Res, 1996, 24: 1 992-1 998.
[15] Mitas M, Yu A, Dill J, et al. Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15[J]. Nucleic Acids Res, 1995, 23: 1 050-1 059.
[16] Gacy A M, Goellner G, Juranic N, et al. Trinucleotide repeats that expand in human disease form hairpin structures in vitro[J]. Cell, 1995, 81: 533-540.
[17] Smith G K, Jie J, Fox G E, et al. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes[J]. Nucleic Acids Res, 1995, 23: 4 303-4 311.
[18] Ashley Jr C T, Warren S T. Trinucleotide repeat expansion and human disease[J]. Annu Rev Genet, 1995, 29: 703-728.
[19] Gellibolian R, Bacolla A, Wells R D. Triplet repeat instability and DNA topology: an expansion model based on statistical mechanics[J]. J Biol Chem, 1997, 272: 16 793-16 797.
[20] Pearson C E, Wang Y H, Griffith J D, et al. Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus[J]. Nucleic Acids Res, 1998, 26: 816-823.
[21] Vincent J B, Paterson A D, Strong E, et al. The unstable trinucleotide repeat story of major psychosis[J]. Am J Med Genet, 2000, 97: 77-97.
[22] Mosemiller A K, Dalton J C, Day J W, et al. Molecular genetics of spinocerebellar ataxia type 8 (SCA8)[J]. Cytogenet Genome Res, 2003, 100: 175-183.
[23] Lenzmeier B A, Freudenreich C H. Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair[J]. Cytogenet Genome Res, 2003, 100: 7-24.
[24] Barbault F, Huynh-Dinh T, Paoletti J, et al. A new peculiar DNA structure: NMR solution structure of a DNA kissing complex[J]. J Biomol Struct Dyn, 2002, 19: 649-658.
[25] Lam S L, Chi L M. Use of chemical shifts for structural studies of nucleic acids[J]. Prog Nucl Magn Reson Spectros, 2010, 56: 289-310.
[26] Edwards S F, Hashem V I, Klysik E A, et al. Genetic instabilities of (CCTG)·(CAGG) and (ATTCT)·(AGAAT) disease-associated repeats reveal multiple pathways for repeat deletion[J]. Mol Carcinog, 2009, 48: 336-349.
[27] Salisbury E, Schoser B, Schneider-Gold C, et al. Expression of RNA CCUG repeats dysregulates translation and degradation of proteins in myotonic dystrophy 2 patients[J]. Am J Pathol, 2009, 175: 748-762.
[28] Ranum L P, Day J W. Pathogenic RNA repeats: an expanding role in genetic disease[J]. Trends Genet, 2004, 20: 506-512.
[29] Dere R, Napierala M, Ranum L P, et al. Hairpin structure-forming propensity of the (CCTG·CAGG) tetranucleotide repeats contributes to the genetic instability associated with myotonic dystrophy type 2[J]. J Biol Chem, 2004, 279: 41 715-41 726.
[30] Dere R, Wells R D. DM2 CCTG·CAGG repeats are crossover hotspots that are more prone to expansions than the DM1 CTG·CAG repeats in Escherichia coli[J]. J Mol Biol, 2006, 360: 21-36.
[31] Edwards S F, Sirito M, Krahe R, et al. A Z DNA sequence reduces slipped-strand structure formation in the myotonic dystrophy type 2 (CCTG)·(CAGG) repeat[J]. Proc Natl Acad Sci USA, 2009, 106: 3 270-3 275.
[32] Nakamori M, Thornton C. Epigenetic changes and non-coding expanded repeats[J]. Neurobiol Dis, 2010, 39: 21-27.
[33] Gatchel J R, Zoghbi H Y. Diseases of unstable repeat expansion: mechanisms and common principles[J]. Nat Rev Genet, 2005, 6: 743-755.
[34] Ho C N, Lam S L. Random coil phosphorus chemical shift of deoxyribonucleic acids[J]. J Magn Reson, 2004, 171: 193-200.
[35] Ippel H H, van den Elst H, van der Marel G A, et al. Structural similarities and differences between H1- and H2-family DNA minihairpin loops: NMR studies of octameric minihairpins[J]. Biopolymers, 1998, 46: 375-393.
[36] Ippel J H, Lanzotti V, Galeone A, et al. An NMR study of the conformation and thermodynamics of the circular dumbbell d<pCGC-TTCGC-TT> Slow exchange between two- and four-membered hairpin loops[J]. J Biomol Struct Dyn, 1992, 9: 821-836.
[37] van Dongen M J, Wijmenga S S, van der Marel G A, et al. The transition from a neutral-pH double helix to a low-pH triple helix induces a conformational switch in the CCCG tetraloop closing a Watson-Crick stem[J]. J Mol Biol, 1996, 263: 715-729. |