[1] Bastein A, Vanderboogert W J, Vanderlee G, et al. Selectivity of Rh catalysts in the syngas reactions- on the role of supports and promoters[J]. Appl Catal, 1987, 29(2): 243-260.
[2] Ichikawa M. Catalysis by supported metal crystallites from carbonyl clusters .1. catalytic methanol synthesis under mild conditions over supported rhodium, platinum, and iridium crystallites prepared from Rh, Pt, and Ir carbonyl cluster compounds deposited on ZnO and MgO [J]. Bull Chem Soc Jpn, 1978, 51(8): 2 268-2 272.
[3] Luo H Y, Zhou H W, Lin L W, et al. Role of vanadium promoter in Rh-V/SiO2 catalysts for the synthesis of C-2-Oxygenates from syngas
[J]. J Catal, 1994, 145(1): 232-234.
[4] Yang A C, Garland C W. Infrared studies of carbon monoxide chemisorbed on Rhodium[J]. J Phys Chem, 1957, 61(11): 1 504-1 512.
[5] Sachtler W M H, Ichikawa M. Catalytic site requirements for elementary steps in syngas conversion to oxygenates over promoted rhodium[J]. J Phys Chem, 1986, 90(20): 4 752-4 758.
[6] Chuang S C, Goodwin J G, Wender I. The effect of alkali promotion on CO hydrogenation over Rh/TiO2[J]. J Catal, 1985, 95(2): 435-446.
[7] Orita H, Naito S, Tamaru K. Improvement of selectivity for C2-Oxygenated compounds in CO-H2 reaction over TiO2-supported Rh catalysts by doping alkali-metal cations[J]. Chem Lett, 1983, 8: 1 161-1 164.
[8] Lin P Z, Liang D B, Luo H Y, et al. Synthesis of C2-Oxygenated compounds directly from syngas[J]. Appl Catal A-Gel, 1995, 131(2): 207-214.
[9] Klinowski J. Solid-state NMR-studies of molecular-sieve catalysts[J]. Chem Rev, 1991, 91(7): 1 459-1 479.
[10] Han X W, Yan Z M, Zhang W P, et al. Applications of in situ NMR in catalytic processes of organic reactions[J]. Curr Org Chem, 2001, 5(10): 1 017-1 037.
[11] Haw J F, Nicholas J B, Xu T, et al. Physical organic chemistry of solid acids: Lessons from in situ NMR and theoretical chemistry[J]. Acc Chem Res, 1996, 29(6): 259-267.
[12] Hunger M, Wang W. Characterization of solid catalysts in the functioning state by nuclear magnetic resonance spectroscopy[J]. Adv Catal, 2006, 50: 149-225.
[13] Ma Z N, Zou Y, Hua W M, et al. In situ C-13 MAS NMR study on the mechanism of butane isomerization over catalysts with different acid strength[J]. Top Catal, 2005, 35(1-2): 141-153.
[14] Xu S T, Zhang W P, Liu X C, et al. Enhanced In situ Continuous-Flow MAS NMR for Reaction Kinetics in the Nanocages[J]. J Am Chem Soc, 2009, 131(38): 13 722-13 727.
[15] Yang J, Ma D, Deng F, et al. Solid state C-13 NMR studies of methane dehydroaromatization reaction on Mo/HZSM-5 and W/HZSM-5 catalysts[J]. Chem Commun, 2002, 24: 3 046-3 047.
[16] Zhang W P, Ma D, Liu X C, et al. Perfluorotributylamine as a probe molecule for distinguishing internal and external acidic sites in zeolites by high-resolution H-1 MAS NMR spectroscopy[J]. Chem Commun, 1999, 12: 1 091-1 092.
[17] Carpenter T A, Klinowski J, Tennakoon D T B, et al. Sealed capsules for convenient acquisition of variable-temperature controlledatmosphere magic-angle-spinning nmr-spectra of solids[J]. J Magn Reson, 1986, 68(3): 561-563.
[18] Haw J F, Richardson B R, Oshiro I S, et al. Reactions of propene on zeolite HY catalyst studied by in situ variable temperature solidstate nuclear magnetic resonance spectroscopy [J]. J Am Chem Soc, 1989, 111(6): 2 052-2 058.
[19] Lan Xi-jie(兰喜杰), Zhang Wei-ping(张维萍), Yan Li(严丽), et al. The reaction process of propene hydroformalytion on PPH3-Rh/SBA-15 catalyst by in situ high-pressure NMR spectroscopy(Rh基催化剂上氢甲酰化反应过程的原位高压NMR研究)[J]. Chinese J Magn Reson(波谱学杂志), 2009, 26(1): 37-43.
[20] Ma Zhuo-na(马卓娜), Hu Jun-cheng(胡军成), Fan Kang-nian(范康年), et al. A new method for characterization of solid superacidity: In situ C-13 MAS NMR study of butane isomerization on catalysts(表征固体超强酸性的新方法-正丁烷异构化反应的原位13C MAS NMR谱) [J]. Acta Chim Sinica(化学学报), 2003, 61(9): 1 352-1 356.
[21] Zhang W P, Ratcliffe C I, Moudrakovski I L, et al. Characterization of the location and interfacial states of gallium in gallium/MCM-41 composites[J]. Microporous Mesoporous Mater, 2005, 79(1-3): 195-203.
[22] Duncan T M, Zilm K W, Hamilton D M, et al. Adsorbed states of carbon monoxide on dispersed metals: a high-resolution solidstate NMR study[J]. J Phys Chem, 1989, 93(6): 2 583-2 590.
[23] Molitor P F, Shoemaker R K, Apple T M. Detection and structural characterization of rhodium dicarbonyls adsorbed in Y zeolites[J]. J Phys Chem, 1989, 93(8): 2 891-2 893.
[24] Rao L F, Hwang S J, King T S, et al. Characterization of CO in Rh6(CO)16/NaY Clusters and Isolated Rh+(CO)2/NaY by Solid-State 13C NMR Spectroscopy[J]. J Phys Chem, 1996, 100(14): 5 668-5 671.
[25] Takahashi N, Miura K, Fukui H. Reaction of rhodium species with carbonmonoxide on freshly prepared Rh-Y zeolite and RhCl3/SiO2 catalysts revealed by the 13C NMR technique[J]. J Phys Chem, 1986, 90(13): 2 797-2 800.
[26] Zscherpel D, Brunner E, Koch M, et al. Variable-temperature 13C magic-angle-spinning nuclear-magnetic-resonance investigations on the interaction between lewis-acid sites and carbon-monoxide in H-ZSM-5 zeolites[J]. Microporous Mater, 1995, 4(2-3): 141-147.
[27] Mehandru S P, Anderson A B, Ross P N. Carbon monoxide adsorption on (111) and (100) surfaces of the Pt3Ti alloy:evidence for parallel binding and strong activation of CO[J]. J Catal, 1986, 100(1): 210-218.
[28] Wang Y, Song Z, Ma D, et al. Characterization of Rh-based catalysts with EPR, TPR, IR and XPS[J]. J Mol Catal A-Chem, 1999, 149(1-2): 51-61.
[29] Wu X, Gerstein B C, King T S. Characterization of silica-supported ruthenium catalysts by hydrogen chemisorption and nuclear magnetic-resonance of adsorbed hydrogen[J]. J Catal, 1989, 118(1): 238-254.
[30] Ioannides T, Verykios X. Influence of the carrier on the interaction of H2 and CO with supported Rh[J]. J Catal, 1993, 140(2): 353-369. |