波谱学杂志 ›› 2023, Vol. 40 ›› Issue (1): 52-67.doi: 10.11938/cjmr20222971
收稿日期:
2022-01-18
出版日期:
2023-03-05
在线发表日期:
2022-04-04
通讯作者:
王远军,王中领
E-mail:yjusst@126.com;zlwang138136@126.com
基金资助:
HAN Bing1,XU Jing2,WANG Yuanjun1,*(),WANG Zhongling2,#()
Received:
2022-01-18
Published:
2023-03-05
Online:
2022-04-04
Contact:
WANG Yuanjun,WANG Zhongling
E-mail:yjusst@126.com;zlwang138136@126.com
摘要:
医生根据磁共振影像征象对患者的乳腺病变程度进行BI-RADS分类评估时存在一定的主观性,且 BI-RADS 3-5类病变的良恶性存在交叉,在临床诊断时极易发生因诊断类别较高而造成不必要的有创治疗.针对这些问题,本文应用影像组学技术对乳腺的T1加权(T1W)和动态对比增强(DCE)磁共振图像进行特征提取和融合,采用最小绝对收缩和选择算子(LASSO)算法筛选出各特征集的最优特征集,并分别使用支持向量机(SVM)、随机森林(RF)、K最近邻(KNN)及逻辑回归(LR)算法进行BI-RADS 3-5类乳腺病变三分类,并且在此基础上实现乳腺良恶性分类.结果显示基于特征融合的四个影像组学模型对乳腺病变BI-RADS 3-5类的分类准确率分别为81.25%、87.50%、78.38%、81.25%;对乳腺病变良恶性鉴别的准确率分别为90.91%、93.55%、92.73%、94.55%. 这表明MRI影像组学结合机器学习的算法对乳腺病变BI-RADS分类效果及良恶性鉴别效果均较好,且特征融合可进一步提高分类预测的准确率.
中图分类号:
韩冰,徐晶,王远军,王中领. 基于MRI影像组学的BI-RADS 3-5类乳腺病变三分类[J]. 波谱学杂志, 2023, 40(1): 52-67.
HAN Bing,XU Jing,WANG Yuanjun,WANG Zhongling. Classification of BI-RADS 3-5 Breast Lesions Based on MRI Radiomics[J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 52-67.
表1
乳腺磁共振图像的影像组学特征
特征类别 | 特征描述 | 特征数 | 特征输入 |
---|---|---|---|
shape | 表面积、伸长率、平面度、球形度、最大二维直径等 | 14 | 原始图像 |
firstorder | 能量、熵、峰值、最大值、平均值、方差、第10百分位数、第90百分位数等 | 342 | 原始图像、派生图像 |
GLCM | 自相关、联合平均、聚类突出度、聚类阴影、对比、相关、差熵等 | 418 | 原始图像、派生图像 |
GLRLM | 长游程强调、短游程强调、灰度不均匀性、游程百分比、游程方差、游程熵等 | 304 | 原始图像、派生图像 |
GLDM | 小依赖度、大依赖度、依赖不均匀性、依赖方差、依赖熵等 | 266 | 原始图像、派生图像 |
GLSZM | 小区域强调、大区域强调、灰度不均匀性、区域百分比、区域方差、区域熵等 | 304 | 原始图像、派生图像 |
NGTDM | 粗糙度、对比度、繁忙度、复杂度、强度 | 95 | 原始图像、派生图像 |
表2
经LASSO算法筛选的最优平扫特征及相应系数
影像组学特征 | 系数 | 特征详情 |
---|---|---|
联合熵(original_glcm_JointEntropy) | 0.010878 | 度量邻域强度值的可变性 |
平均值(log-sigma-5-0-mm-3D_firstorder_Mean) | 0.120571 | 描述肿瘤区域的平均灰度值 |
小区域低灰度级强调 (wavelet-HLH_glszm_SmallAreaLowGrayLevelEmphasis) | -0.110678 | 描述低灰度小尺寸区域体素的分布 |
归一化相关不均匀性 (wavelet-HHL_gldm_DependenceNonUniformityNormalized) | -0.089366 | 描述GLDM中体素相关关系的相似程度 |
依赖方差(wavelet-HHL_gldm_DependenceVariance) | 0.007990 | 描述GLDM中依赖大小的方差 |
相关性信息测度2(wavelet-HHH_glcm_Imc2) | -0.045300 | 量化纹理的复杂性 |
游程方差(wavelet-HHH_glrlm_RunVariance) | -0.059722 | 度量游程长度的方差 |
依赖熵(gradient_gldm_DependenceEntropy) | 0.019160 | 度量GLDM中依赖大小与灰度级分布的随机性程度 |
小依赖性低灰度级强调(gradient_gldm_SmallDependenceLowGrayLevelEmphasis) | -0.021736 | 描述体素小相关性与低阶灰度值的联合分布情况 |
相关性信息测度1(squareroot_glcm_Imc1) | 0.030811 | 量化纹理的复杂性 |
强度(exponential_ngtdm_Strength) | -0.055385 | 度量肿瘤图像的灰度变化程度 |
表3
经LASSO算法筛选的最优增强特征及相应系数
影像组学特征 | 系数 | 特征详情 |
---|---|---|
原始图像最小值(original_firstorder_Minimum) | -0.013973 | 描述肿瘤区域的最小灰度值 |
大依赖高灰度级强调(original_gldm_LargeDependenceHighGrayLevelEmphasis) | 0.039997 | 测量具有较高灰度值和体素强相关关系的联合分布情况 |
偏度(wavelet-LHH_firstorder_Skewness) | 0.001540 | 度量强度平均值的分布不对称性 |
相关性信息测度1(wavelet-LHH_glcm_Imc1) | 0.057154 | 量化纹理的复杂性 |
小波变换LLL方向联合熵 (wavelet-LLL_glcm_JointEntropy) | 0.197864 | 度量邻域强度值的可变性 |
归一化逆差矩(gradient_glcm_Idmn) | 0.034171 | 度量肿瘤图像的局部平均程度 |
平方变换最小值(square_firstorder_Minimum) | 0.037978 | 描述肿瘤区域的最小灰度值 |
平方变换联合熵(square_glcm_JointEntropy) | 0.064132 | 度量邻域强度值的可变性 |
大区域低灰度级强调 (squareroot_glszm_LargeAreaLowGrayLevelEmphasis) | -0.014832 | 测量图像中具有较低灰度值的较大尺寸区域体素的分布 |
低灰度区域强调 (logarithm_glszm_LowGrayLevelZoneEmphasis) | -0.055083 | 描述低灰度级区域体素的分布 |
低灰度强调(logarithm_gldm_LowGrayLevelEmphasis) | -0.084834 | 描述低阶灰度体素的分布情况 |
表4
经LASSO算法筛选的最优融合特征及相应系数
影像组学特征 | 系数 | 特征详情 |
---|---|---|
最大2D直径(列) (original_shape_Maximum2DDiameterColumn) | 0.081848 | 冠状平面中肿瘤表面网格顶点之间最大的欧几里得距离 |
相关性信息测度1(wavelet-LHL_glcm_Imc1) | 0.018552 | 量化纹理的复杂性 |
集群阴影(wavelet-LHH_glcm_ClusterShade) | -0.022909 | 描述图像的褶皱程度 |
小波变换HLL方向粗糙度 (wavelet-HLL_ngtdm_Coarseness) | -0.051320 | 度量中心体素与其邻域体素之间平均差异 |
小区域低灰度级强调 (wavelet-HLH_glszm_SmallAreaLowGrayLevelEmphasis) | -0.031217 | 描述图像中具有较低灰度值的较小尺寸区域体素分布 |
相关性信息测度2(wavelet-HHL_glcm_Imc2) | -0.066184 | 量化纹理的复杂性 |
逆方差(wavelet-HHH_glcm_InverseVariance) | 0.010646 | 度量肿瘤图像局部均匀程度 |
归一化灰度不均匀度 (wavelet-LLL_glszm_GrayLevelNonUniformityNormalized) | -0.138090 | 测量图像中灰度强度值的可变性 |
小波变换LLL方向粗糙度 (wavelet-LLL_ngtdm_Coarseness) | -0.086469 | 度量中心体素与其邻域体素之间平均差异 |
归一化区域大小不均匀度 (square_glszm_SizeZoneNonUniformityNormalized) | -0.022937 | 测量整个图像中大小区域体积的可变性 |
最小值(exponential_firstorder_Minimum) | -0.038634 | 描述肿瘤区域的最小灰度值 |
对比度(logarithm_ngtdm_Contrast) | -0.019143 | 度量体素灰度的空间变化率 |
表5
基于各种特征的不同模型对乳腺病变BI-RADS 3-5类的诊断效能
特征 | 模型 | 准确率 | Kappa系数 | 海明损失 | Micro AUC | Macro AUC |
---|---|---|---|---|---|---|
平扫特征 | SVM | 64.86% | 0.419 | 0.297 | 0.848 | 0.820 |
RF | 70.27% | 0.421 | 0.333 | 0.878 | 0.846 | |
KNN | 70.27% | 0.421 | 0.333 | 0.830 | 0.769 | |
LR | 71.43% | 0.421 | 0.333 | 0.858 | 0.882 | |
增强特征 | SVM | 70.27% | 0.428 | 0.297 | 0.895 | 0.847 |
RF | 86.49% | 0.428 | 0.297 | 0.928 | 0.862 | |
KNN | 76.19% | 0.445 | 0.297 | 0.875 | 0.828 | |
LR | 78.57% | 0.428 | 0.297 | 0.948 | 0.929 | |
融合特征 | SVM | 81.25% | 0.606 | 0.224 | 0.881 | 0.855 |
RF | 87.50% | 0.676 | 0.188 | 0.951 | 0.988 | |
KNN | 78.38% | 0.606 | 0.224 | 0.886 | 0.867 | |
LR | 81.25% | 0.606 | 0.224 | 0.961 | 0.989 |
表6
经LASSO算法筛选的最优平扫特征及相应系数
影像组学特征 | 系数 | 特征详情 |
---|---|---|
联合能量(original_glcm_JointEnergy) | -0.074162 | 度量图像纹理中相邻灰度变换稳定程度 |
最大概率(original_glcm_MaximumProbability) | -0.049634 | 描述图像中出现次数最多的纹理特征 |
大依赖低灰度级强调(log-sigma-2-0-mm-3D_gldm_LargeDependenceLowGrayLevelEmphasis) | -0.029816 | 描述体素强相关关系与低阶灰度的联合分布情况 |
大区域低灰度级强调 (wavelet-LLH_glszm_LargeAreaLowGrayLevelEmphasis) | 0.001242 | 描述低灰度大尺寸区域体素的分布 |
小依赖低灰度级强调 (wavelet-HHL_gldm_SmallDependenceLowGrayLevelEmphasis) | -0.008748 | 描述体素小相关关系与低阶灰度的联合分布情况 |
小波变换HHL方向归一化区域大小不均匀度 (wavelet-HHL_glszm_SizeZoneNonUniformityNormalized) | -0.020799 | 测量整个图像中大小区域体积的可变性 |
强度(wavelet-HHL_ngtdm_Strength) | -0.083993 | 度量肿瘤图像的灰度变化程度 |
短游程低灰度级强调(square_glrlm_ShortRunLowGrayLevelEmphasis) | -0.088759 | 度量低阶灰度值与短游程长度的联合分布情况 |
小区域低灰度级强调(exponential_glszm_SmallAreaLowGrayLevelEmphasis) | 0.037705 | 描述低灰度小尺寸区域体素的分布 |
对数变换归一化区域大小不均匀度(logarithm_glszm_SizeZoneNonUniformityNormalized) | -0.004205 | 测量整个图像中大小区域体积的可变性 |
小依赖强调(logarithm_gldm_SmallDependenceEmphasis) | -0.011085 | 描述与领域内体素相关性较小的体素分布情况 |
表7
经LASSO算法筛选的最优增强特征及相应系数
影像组学特征 | 系数 | 特征详情 |
---|---|---|
长轴长度(original_shape_MajorAxisLength) | 0.053568 | 度量肿瘤最长轴的长度 |
小区域强调(wavelet-LLH_glszm_SmallAreaEmphasis) | 0.007506 | 度量小尺寸区域的分布情况 |
大依赖低灰度级强调 (wavelet-LLH_gldm_LargeDependenceLowGrayLevelEmphasis) | -0.022168 | 描述体素强相关关系与低阶灰度的联合分布情况 |
强度(wavelet-LHL_ngtdm_Strength) | -0.002489 | 度量肿瘤图像的灰度变化程度 |
峰度(wavelet-LHH_firstorder_Kurtosis) | -0.038882 | 度量图像ROI中值分布的峰值 |
小依赖低灰度级强调 (wavelet-HLL_gldm_SmallDependenceLowGrayLevelEmphasis) | -0.003671 | 描述体素小相关关系与低阶灰度的联合分布情况 |
归一化灰度不均匀度 (wavelet-HLH_glszm_GrayLevelNonUniformityNormalized) | -0.117303 | 测量图像中灰度强度值的可变性 |
梯度变换联合熵(gradient_glcm_JointEntropy) | 0.001880 | 度量邻域强度值的可变性 |
平方变换联合熵(square_glcm_JointEntropy) | 0.058258 | 度量邻域强度值的可变性 |
强度(square_ngtdm_Strength) | -0.046019 | 度量肿瘤图像的灰度变化程度 |
归一化依赖不均匀性(exponential_gldm_DependenceNonUniformityNormalized) | -0.071656 | 测量整个图像中体素相关关系的相似程度 |
表8
经LASSO算法筛选的最优融合特征及相应系数
影像组学特征 | 系数 | 特征详情 |
---|---|---|
长轴长度(original_shape_MajorAxisLength) | 0.050888 | 度量肿瘤最长轴的长度 |
联合能量(original_glcm_JointEnergy) | -0.016239 | 度量图像纹理中相邻灰度变换稳定程度 |
最大概率(original_glcm_MaximumProbability) | -0.071362 | 描述图像中出现次数最多的纹理特征 |
小波变换LLH方向-小区域强调 (wavelet-LLH_glszm_SmallAreaEmphasis) | 0.009840 | 度量小尺寸区域的分布情况 |
大依赖低灰度级强调 (wavelet-LLH_gldm_LargeDependenceLowGrayLevelEmphasis) | -0.014709 | 描述体素强相关关系与低阶灰度的联合分布情况 |
低灰度区域强调 (wavelet-LHH_glszm_LowGrayLevelZoneEmphasis) | -0.002699 | 描述低灰度级区域体素的分布 |
区域熵(wavelet-LHH_glszm_ZoneEntropy) | 0.090181 | 度量灰度区域大小与灰度级分布的不稳定性 |
相关性信息测度2(wavelet-HHL_glcm_Imc2) | -0.086920 | 量化纹理的复杂性 |
小波变换HHL方向-小区域强调 (wavelet-HHL_glszm_SmallAreaEmphasis) | -0.051711 | 度量小区域尺寸的分布情况 |
小依赖低灰度级强调 (wavelet-HHL_gldm_SmallDependenceLowGrayLevelEmphasis) | -0.012360 | 描述体素小相关关系与低阶灰度的联合分布情况 |
中位数(wavelet-HHH_firstorder_Median) | -0.023237 | 描述肿瘤区域的灰度中位数 |
逆方差(wavelet-HHH_glcm_InverseVariance) | 0.013141 | 度量肿瘤图像局部均匀程度 |
粗糙度(wavelet-LLL_ngtdm_Coarseness) | -0.014267 | 度量中心体素与其邻域体素灰度值的平均差异 |
短游程低灰度级强调(square_glrlm_ShortRunLowGrayLevelEmphasis) | -0.048257 | 度量低阶灰度值与短游程长度的联合分布情况 |
强度(square_ngtdm_Strength) | -0.002079 | 度量肿瘤图像的灰度变化程度 |
第10%分位值(squareroot_firstorder_10Percentile) | -0.003926 | 指肿瘤区域10%分位数的灰度值 |
小区域低灰度级强调(exponential_glszm_SmallAreaLowGrayLevelEmphasis) | 0.003075 | 描述低灰度小尺寸区域体素的分布 |
小依赖强调(logarithm_gldm_SmallDependenceEmphasis) | -0.002973 | 描述与领域内体素相关性较小的体素分布情况 |
表9
基于各种特征的不同模型对乳腺病变良恶性的诊断效能
特征 | 模型 | AUC | 准确率 | 灵敏度 | 特异度 |
---|---|---|---|---|---|
平扫特征 | SVM | 0.889 | 80.65% | 66.67% | 86.67% |
RF | 0.934 | 83.87% | 66.67% | 90.91% | |
KNN | 0.838 | 80.65% | 77.78% | 81.82% | |
LR | 0.955 | 83.87% | 77.78% | 86.36% | |
增强特征 | SVM | 0.927 | 85.45% | 92.31% | 83.33% |
RF | 0.960 | 89.09% | 84.62% | 90.48% | |
KNN | 0.958 | 85.45% | 84.62% | 85.71% | |
LR | 0.965 | 89.09% | 84.62% | 90.48% | |
融合特征 | SVM | 0.973 | 90.91% | 78.57% | 95.19% |
RF | 0.958 | 93.55% | 90.00% | 95.24% | |
KNN | 0.971 | 92.73% | 92.86% | 92.68% | |
LR | 0.974 | 94.55% | 85.71% | 97.56% |
[1] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA: A Cancer J Clin, 2021, 71(1): 7-33.
doi: 10.3322/caac.21654 |
[2] |
FENG R M, ZONG Y N, CAO S M, et al. Current cancer situation in China: good or bad news from the 2018 global cancer statistics?[J]. Cancer Commun, 2019, 39(1): 22-33.
doi: 10.1186/s40880-019-0368-6 |
[3] |
VALDORA F, HOUSSAMI N, ROSSI F, et al. Rapid review: radiomics and breast cancer[J]. Breast Cancer Res Treat, 2018, 169(2): 217-229.
doi: 10.1007/s10549-018-4675-4 |
[4] |
MANN R M, CHO N, MOY L. Breast MRI: State of the art[J]. Radiology, 2019, 292(3): 520-536.
doi: 10.1148/radiol.2019182947 pmid: 31361209 |
[5] |
WAKANA M, HYUNG W C, JOINES M M, et al. Quantitative predictors of response to neoadjuvant chemotherapy on dynamic contrast-enhanced 3T breast MRI[J]. J Breast Imaging, 2022, 4(2): 168-176.
doi: 10.1093/jbi/wbab095 |
[6] |
SHAHAN C L, LAYNE G P. Advances in breast imaging with current screening recommendations and controversies[J]. Obstet Gynecol Clin North Am, 2022, 49(1): 1-33.
doi: 10.1016/j.ogc.2021.11.001 |
[7] | LIU Y, CHEN J C, HU X Y, et al. Classification and localization of meningioma and acoustic neuroma in cerebellopontine angle based on mask RCNN[J]. Chinese J Magn Reson, 2021, 38(1): 58-68. |
刘颖, 陈静聪, 胡小洋, 等. 基于Mask RCNN的桥小脑角区脑膜瘤与听神经瘤分类定位研究[J]. 波谱学杂志, 2021, 38(1): 58-68. | |
[8] |
WEAVER O, LEUNG J W T. Biomarkers and imaging of breast cancer[J]. AJR Am J Roentgenol, 2018, 210(2): 271-278.
doi: 10.2214/AJR.17.18708 |
[9] |
RAWASHDEH M, LEWIS S, ZAITOUN M, et al. Breast lesion shape and margin evaluation: BI-RADS based metrics understate radiologists' actual levels of agreement[J]. Comput Biol Med, 2018, 96(1): 294-298.
doi: 10.1016/j.compbiomed.2018.04.005 |
[10] |
SATAKE H, ISHIGAKI S, ITO R, NAGANAWA S. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence[J]. Radiol Med. 2022, 127(1): 39-56.
doi: 10.1007/s11547-021-01423-y |
[11] |
LEITHNER D, HORVAT J V, OCHOA-ALBIZTEGUI R E, et al. Imaging and the completion of the omics paradigm in breast cancer[J]. Der Radiologe, 2018, 58(1): 7-13.
doi: 10.1007/s00117-018-0409-1 |
[12] | WANG N, WANG Y J, LIAN P. Prediction of preoperative T staging of rectal cancer based on radiomics[J]. Chinese J Magn Reson, 2022, 39(1): 43-55. |
王楠, 王远军, 廉朋. 基于影像组学的直肠癌术前T分期预测[J]. 波谱学杂志, 2022, 39(1): 43-55. | |
[13] |
IMBRIACO M, CUOCOLO R. Does texture analysis of MR images of breast tumors help predict response to treatment?[J]. Radiology, 2018, 286(2): 421-423.
doi: 10.1148/radiol.2017172454 pmid: 29356631 |
[14] |
YIN X X, HADJILOUCAS S, ZHANG Y C, et al. MRI radiogenomics for intelligent diagnosis of breast tumors and accurate prediction of neoadjuvant chemotherapy responses — A review[J]. Comput Meth Prog Bio, 2021, 214: 106510.
doi: 10.1016/j.cmpb.2021.106510 |
[15] |
NARANJO I D, GIBBS P, REINER J S, et al. Radiomics and machine learning with multiparametric breast MRI for improved diagnostic accuracy in breast cancer diagnosis[J]. Diagnostics, 2021, 11(6): 919-932.
doi: 10.3390/diagnostics11060919 |
[16] | PRATIKSHA Y, SURBHI C. Effectivity of combined diffusion-weighted imaging and contrast-enhanced MRI in malignant and benign breast lesions[J]. Pol J Radiol, 2018, 83: e82-e93. |
[17] | HU Q, WHITNEY H M, GIGER M L. Radiomics methodology for breast cancer diagnosis using multiparametric magnetic resonance imaging[J]. J Med Imaging, 2020, 7(4): 044502. |
[18] | YE D M, WANG H T, YU T. The application of radiomics in breast MRI: A review[J]. Technol Cancer Res Tr, 2020, 19: 1-16. |
[19] |
PAREKH V S, JACOBS M A. Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging[J]. Breast Cancer Res Tr, 2020, 180(2): 407-421.
doi: 10.1007/s10549-020-05533-5 pmid: 32020435 |
[20] | DEMIRCIOGLU A, GRUENEISEN J, INGENWERTH M, et al. A rapid volume of interest-based approach of radiomics analysis of breast MRI for tumor decoding and phenotyping of breast cancer[J]. PLoS ONE, 2020, 15(6): e0234871. |
[21] |
TSAROUCHI M I, VLACHOPOULOS G F, KARAHALIOU A N, et al. Multi-parametric MRI lesion heterogeneity biomarkers for breast cancer diagnosis[J]. Phys Medica, 2020, 80(2): 101-110.
doi: 10.1016/j.ejmp.2020.10.007 |
[22] |
ZHANG Q, PENG Y S, LIU W, et al. Radiomics based on multimodal MRI for the differential diagnosis of benign and malignant breast lesions[J]. J Magn Reson Imaging, 2020, 52(2): 596-607.
doi: 10.1002/jmri.27098 pmid: 32061014 |
[23] |
HAO W, GONG J, WANG S P, et al. Application of MRI radiomics-based machine learning model to improve contralateral BI-RADS 4 lesion assessment[J]. Front Oncol, 2020. doi: 10.3389/fonc.2020.531476.
doi: 10.3389/fonc.2020.531476 |
[24] | QIAO M Y, LI C K, SUO S T, et al. Breast DCE-MRI radiomics: a robust computer-aided system based on reproducible BI-RADS features across the influence of datasets bias and segmentation methods[J]. Int J Comput Ass Rad, 2020, 15(5): 921-930. |
[25] |
SCAPICCHIO C, GABELLONI M, BARUCCI A, et al. A deep look into radiomics[J]. La Radiologia Medica, 2021, 126: 1296-1311.
doi: 10.1007/s11547-021-01389-x |
[26] | DOMINGUES I, ABREU P H, SANTOS J. Bi-Rads classification of breast cancer: A new pre-processing pipeline for deep models training[C]// IEEE International Conference of Image Processing (ICIP). IEEE, 2018.1378-1382. |
[27] | SIDDEEQ S, LI J, BHATTI H M A, et al. Deep learning RN-BCNN model for breast cancer BI-RADS classification[C]. ICIGP 2021: 2021 The 4th International Conference on Image and Graphics Processing. 2021: 219-225. |
[28] | WU P Q. Research progress of radiomics in lymph node metastasis of breast cancer[J]. Journal of Molecular Imaging, 2020, 43 (1): 31-35. |
吴佩琪. 影像组学在乳腺癌淋巴结转移中的研究进展[J]. 分子影像学杂志, 2020, 43(1): 31-35. |
[1] | 李奕洁,杨馨雨,杨晓梅. 融合注意力机制的多尺度残差Unet的磁共振图像重建[J]. 波谱学杂志, 2023, 40(3): 307-319. |
[2] | 陆琪琪,连梓锋,李嘉龙,斯文彬,麦兆华,冯衍秋. 基于自监督网络的肝脏磁共振$R_{2}^{*}$参数图像重建[J]. 波谱学杂志, 2023, 40(3): 258-269. |
[3] | 张天宁, 雷展智, 肖亮. 基于SerialLite II协议的磁共振成像数据传输系统设计[J]. 波谱学杂志, 2023, 40(2): 179-191. |
[4] | 钱程一, 王远军. 基于深度学习的阿尔兹海默症影像学分类研究进展[J]. 波谱学杂志, 2023, 40(2): 220-238. |
[5] | 田雨, 周臣, 张亚男, 王鹏, 张彩云, 宋天玮, 钱俊超. 实验性脊髓损伤后大脑血管可塑性的磁共振血管尺寸成像研究[J]. 波谱学杂志, 2023, 40(2): 158-168. |
[6] | 施伟成,金朝阳,叶铮. 基于PCAU-Net的快速多通道磁共振成像方法[J]. 波谱学杂志, 2023, 40(1): 39-51. |
[7] | 李盼, 房德磊, 张峻霞, 马得贝. 基于图像质量评价的手术机器人系统磁共振兼容性分析方法[J]. 波谱学杂志, 2023, 40(1): 79-91. |
[8] | 杨一风, 祁章璇, 聂生东. 基于多模态MRI与深度学习的乳腺病变良恶性鉴别[J]. 波谱学杂志, 2022, 39(4): 401-412. |
[9] | 邓岚,王远军. 基于高斯平均的DTI脑模板构建方法[J]. 波谱学杂志, 2022, 39(4): 413-427. |
[10] | 陈小明, 赵修超, 孙献平, 谢军帅, 李海东, 韩叶清, 刘小玲, 陈琪, 周欣. 超极化129Xe自动收集-升华装置研究[J]. 波谱学杂志, 2022, 39(3): 316-326. |
[11] | 李笛, 霍雷, 万梦云, 贾宁阳, 王丽嘉. 基于新型支持向量机的影像组学在肝脏结节分类中的应用[J]. 波谱学杂志, 2022, 39(3): 278-290. |
[12] | 邱先鑫,韩旭,汪耀,丁伟娜,孙雅文,周滟,雷皓,林富春. 网络游戏障碍人群大脑功能网络rich club结构的改变[J]. 波谱学杂志, 2022, 39(3): 258-266. |
[13] | 邱玥, 聂生东, 魏珑. 基于全卷积网络的乳腺肿瘤动态增强磁共振图像分割[J]. 波谱学杂志, 2022, 39(2): 196-207. |
[14] | 马岩, 邢藏菊, 肖亮. 基于级联网络的膝关节图像分割与模型构建[J]. 波谱学杂志, 2022, 39(2): 184-195. |
[15] | 骆俊, 刘盛平, 杨兴, 王佳升, 李烨. 一种无磁化的5 T磁共振射频功率放大器设计[J]. 波谱学杂志, 2022, 39(2): 163-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||