1 |
KUBOTA K . From tumor biology to clinical PET: a review of positron emission tomography (PET) in oncology[J]. Anna Nucl Med, 2001, 15 (6): 471- 486.
|
2 |
LIU T T , WANG J , GUO X Y . Proton magnetic resonance spectroscopy in brain science researches[J]. Chinese J Magn Reson, 2020, 37 (2): 232- 240.
|
|
刘涛涛, 王杰, 郭向阳. 脑科学研究中的质子磁共振波谱方法[J]. 波谱学杂志, 2020, 37 (2): 232- 240.
|
3 |
XU X , YADAV N N , KNUTSSON L , et al. Dynamic glucose-enhanced (DGE) MRI: translation to human scanning and first results in glioma patients[J]. Tomography, 2015, 1 (2): 105.
doi: 10.18383/j.tom.2015.00175
|
4 |
LI H D , ZHANG Z Y , HAN Y Q , et al. Lung MRI using hyperpolarized gases[J]. Chinese J Magn Reson, 2014, 31 (3): 307- 320.
doi: 10.3969/j.issn.1000-4556.2014.03.002
|
|
李海东, 张智颖, 韩叶清, 等. 超极化气体肺部磁共振成像[J]. 波谱学杂志, 2014, 31 (3): 307- 320.
doi: 10.3969/j.issn.1000-4556.2014.03.002
|
5 |
WANG C W , HUANG X , SHI L , et al. Cathepsin B triggered hyperpolarization 129Xe MRI probe for ultra-sensitive lung cancer cells detection[J]. Chinese J Magn Reson, 2021, 38 (3): 336- 344.
|
|
王崇武, 黄曦, 石磊, 等. 组织蛋白酶B响应的超极化129Xe MRI探针对肺癌细胞的超灵敏探测[J]. 波谱学杂志, 2021, 38 (3): 336- 344.
|
6 |
KURHANEWICZ J , VIGNERON D B , ARDENKJAER-LARSEN J H , et al. Hyperpolarized 13C MRI: path to clinical translation in oncology[J]. Neoplasia, 2019, 21 (1): 1- 16.
|
7 |
DE FEYTER H M , BEHAR K L , CORBIN Z A , et al. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo[J]. Sci Adv, 2018, 4 (8): eaat7314.
doi: 10.1126/sciadv.aat7314
|
8 |
UREY H C , BRICKWEDDE F G , MURPHY G M . A hydrogen isotope of mass 2 and its concentration[J]. Phys Rev, 1932, 40 (1): 1- 15.
|
9 |
俎栋林, 高家红. 核磁共振成像——物理原理和方法[M]. 北京: 北京大学出版社, 2014, 1- 19.
|
10 |
LU M , ZHU X H , ZHANG Y , et al. Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy[J]. Journal of Cerebral Blood Flow & Metabolism, 2017, 37 (11): 3518- 3530.
|
11 |
朱圣庚, 徐长法. 生物化学.下册[M]. 第4版 北京: 高等教育出版社, 2016, 49- 90.
|
12 |
HOUSE S W , WARBURG O , BURK D , et al. On respiratory impairment in cancer cells[J]. Science, 1956, 124 (3215): 267- 272.
|
13 |
KREIS F , WRIGHT A J , HESSE F , et al. Measuring tumor glycolytic flux in vivo by using fast deuterium MRI[J]. Radiology, 2020, 294 (2): 289- 296.
|
14 |
GERWING M , HERRMANN K , HELFEN A , et al. The beginning of the end for conventional RECIST—novel therapies require novel imaging approaches[J]. Nat Rev Clin Oncol, 2019, 16 (7): 442- 458.
|
15 |
GALLAGHER F A , KETTUNEN M I , HU D E , et al. Production of hyperpolarized[1, 4-13C2] malate from[1, 4-13C2] fumarate is a marker of cell necrosis and treatment response in tumors[J]. Proc Natl Acad Sci, 2009, 106 (47): 19801- 19806.
|
16 |
HESSE F, SOMAI V, KREIS F, et al. Monitoring tumor cell death in murine tumor models using deuterium magnetic resonance spectroscopy and spectroscopic imaging[J]. Proc Natl Acad Sci, 2021, 118(12): e2014631118.
|
17 |
DE FEYTER H M , THOMAS M A , BEHAR K L , et al. NMR visibility of deuterium-labeled liver glycogen in vivo[J]. Magn Reson Med, 2021, 86 (1): 62- 68.
|
18 |
TAKASAWA M , MOUSTAFA R R , BARON J C . Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke[J]. Stroke, 2008, 39 (5): 1629- 1637.
|
19 |
STRAATHOF M , MEERWALDT A E , DE FEYTER H M , et al. Deuterium metabolic imaging of the healthy and diseased brain[J]. Neuroscience, 2021, 474, 94- 99.
|
20 |
RIIS-VESTERGAARD M J , LAUSTSEN C , MARIAGER C Ø , et al. Glucose metabolism in brown adipose tissue determined by deuterium metabolic imaging in rats[J]. Inter J Obesity, 2020, 44 (6): 1417- 1427.
|
21 |
WANG T , ZHU X H , LI H , et al. Noninvasive assessment of myocardial energy metabolism and dynamics using in vivo deuterium MRS imaging[J]. Magn Reson Med, 2021, 86 (6): 2899- 2909.
|
22 |
VON MORZE C , ENGELBACH J A , BLAZEY T , et al. Comparison of hyperpolarized 13C and non-hyperpolarized deuterium MRI approaches for imaging cerebral glucose metabolism at 4.7 T[J]. Magn Reson Med, 2021, 85 (4): 1795- 1804.
|
23 |
MAHAR R , DONABEDIAN P L , MERRITT M E . HDO production from[2H7] glucose quantitatively identifies warburg metabolism[J]. Sci Rep, 2020, 10 (1): 8885.
|
24 |
DE GRAAF R A , THOMAS M A , BEHAR K L , et al. Characterization of kinetic isotope effects and label loss in deuterium-based isotopic labeling studies[J]. ACS Chem Neurosci, 2020, 12 (1): 234- 243.
|
25 |
RICH L J , BAGGA P , WILSON N E , et al. 1H magnetic resonance spectroscopy of 2H-to-1H exchange quantifies the dynamics of cellular metabolism in vivo[J]. Nat Biomed Engineer, 2020, 4 (3): 335- 342.
|
26 |
DE GRAAF R A , HENDRIKS A D , KLOMP D W J , et al. On the magnetic field dependence of deuterium metabolic imaging[J]. NMR Biomed, 2020, 33 (3): e4235.
|
27 |
RUHM L , AVDIEVICH N , ZIEGS T , et al. Deuterium metabolic imaging in the human brain at 9.4 Tesla with high spatial and temporal resolution[J]. NeuroImage, 2021, 244, 118639.
|
28 |
ZHANG Y , GAO Y , ZHANG X T , et al. Proton/deuterium magnetic resonance imaging of rodents at 9.4 T using birdcage coils[J]. Bioelectromagnetics, 2022, 43 (1): 40- 46.
|
29 |
DE FEYTER H M , DE GRAAF R A . Deuterium metabolic imaging–Back to the future[J]. J Magn Reson, 2021, 326, 106932.
|
30 |
PETERS D C , MARKOVIC S , BAO Q , et al. Improving deuterium metabolic imaging (DMI) signal-to-noise ratio by spectroscopic multi-echo bSSFP: A pancreatic cancer investigation[J]. Magn Reson Med, 2021, 86 (5): 2604- 2617.
|
31 |
LI Y D , ZHAO Y B , GUO R , et al. Machine learning-enabled high-resolution dynamic deuterium MR spectroscopic imaging[J]. IEEE T Med Imaging, 2021, 40 (12): 3879- 3890.
|
32 |
NARESSI A , COUTURIER C , DEVOS J M , et al. Java-based graphical user interface for the MRUI quantitation package[J]. Magnetic resonance materials in physics, biology and medicine, 2001, 12 (2): 141- 152.
|
33 |
PROVENCHER S W . Estimation of metabolite concentrations from localized in vivo proton NMR spectra[J]. Magn Reson Med, 1993, 30 (6): 672- 679.
|
34 |
TAGLANG C , BATSIOS G , MUKHERJEE J , et al. Deuterium magnetic resonance spectroscopy enables non-invasive metabolic imaging of tumor burden and response to therapy in low-grade gliomas[J]. Neuro-oncology, 2022, 24 (7): 1101- 1112.
|
35 |
LAM F, CHU J, CHOI J S, et al. Epigenetic MRI: Noninvasive imaging of DNA methylation in the brain[J]. Proc Natl Acad Scie, 2022, 119(10): e2119891119.
|