波谱学杂志 ›› 2018, Vol. 35 ›› Issue (3): 353-362.doi: 10.11938/cjmr20182617
文鹏杰1,2, 苏鹏1, 王浩4, 胡亮1, 林坤章1, 朱续涛1,2, 邱宇翔3, 郑宁1,2, 张志建1, 徐富强1,2
收稿日期:
2018-02-08
出版日期:
2018-09-05
发布日期:
2018-08-28
通讯作者:
徐富强,Tel:027-87197091,E-mail:fuqiang.xu@wipm.ac.cn;张志建,Tel:027-87197220,E-mail:zhzhj_hust@126.com
E-mail:fuqiang.xu@wipm.ac.cn;zhzhj_hust@126.com
基金资助:
WEN Peng-jie1,2, SU Peng1, WANG Hao4, HU Liang1, LIN Kun-zhang1, ZHU Xu-tao1,2, QIU Yu-xiang3, ZHENG Ning1,2, ZHANG Zhi-jian1, XU Fu-qiang1,2
Received:
2018-02-08
Online:
2018-09-05
Published:
2018-08-28
摘要: 神经元是构成神经系统的基本单位之一,对其精细形态结构的研究是了解神经网络构筑和信息处理方式的基础,然而目前缺乏能够标记具有特定投射特征的特异类型神经元精细结构的有效方法.在糖蛋白基因缺失的水泡性口炎病毒(VSV)毒株基础上突变其核蛋白,我们获得了重组病毒VSV-△G-NR7A-EGFP,并发现该病毒在一定窗口期内可实现神经元形态的快速高亮度标记;我们进一步在此基础上构建了VSV-△G-EnvA-NR7A-EGFP病毒,并基于特定的转基因动物及辅助病毒rAAV-EF1α-Dio-Bfp-Tva,通过控制注射位点,分别实现了有NAc-LH投射特异性的D2R神经元和VTA-NAc投射特异性的多巴胺神经元的标记,展示了一种可用于稀疏、高亮地标记具有特定投射特征的特异类型神经元精细结构的新方法.
中图分类号:
文鹏杰, 苏鹏, 王浩, 胡亮, 林坤章, 朱续涛, 邱宇翔, 郑宁, 张志建, 徐富强. 利用VSV标记具有特定投射的特异类型神经元的精细结构[J]. 波谱学杂志, 2018, 35(3): 353-362.
WEN Peng-jie, SU Peng, WANG Hao, HU Liang, LIN Kun-zhang, ZHU Xu-tao, QIU Yu-xiang, ZHENG Ning, ZHANG Zhi-jian, XU Fu-qiang. Labeling Fine Morphology of Neurons with Specific Cell Types and Specific Projection Using Vesicular Stomatitis Virus[J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 353-362.
[1] KOCH C, REID R C. Observatories of the mind[J]. Nature, 2012, 483:397-398. [2] LLINAS R. The intrinsic electrophysiological properties of mammalian neurons:insights into central nervous system function[J]. Science, 1988, 242(4886):1654-1664. [3] WU R Q, LI B, LIU Y, et al. Current state and future of optogenetic functional magnetic resonance imaging[J]. Chinese J Magn Reson, 2014, 31(2):295-305. 吴瑞琪, 李博, 刘悦, 等. 光激活磁共振脑功能成像的研究现状及前景[J]. 波谱学杂志, 2014, 31(2):295-305. [4] ZHU X T, HE X B, LIU Y, et al. A convenient semi-automatic method for analyzing brain sections:registration, segmentation and cell counting[J]. Chinese J Magn Reson, 2018, 35(2):133-140. 朱续涛, 何晓斌, 刘悦, 等. 一种简易的脑片图像的半自动区域划分及细胞计数方法[J]. 波谱学杂志, 2018, 35(2):133-140. [5] JEFFERIS G S, LIVET J. Sparse and combinatorial neuron labelling[J]. Curr Opin Neurobiol, 2012, 22(1):101-110. [6] NERN A, PFEIFFER B D, RUBIN G M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system[J]. Proc Natl Acad Sci U S A, 2015, 112(22):E2967-E2976. [7] WU H, WILLIAMS J, NATHANS J. Morphologic diversity of cutaneous sensory afferents revealed by genetically directed sparse labeling[J]. eLife, 2012, 1:e00181. [8] ECONOMO M N, CLACK N G, LAVIS L D, et al. A platform for brain-wide imaging and reconstruction of individual neurons[J]. eLife, 2016, 5:e10566. [9] HOLTMAAT A, BONHOEFFER T, CHOW D K, et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window[J]. Nat Protoc, 2009, 4(8):1128-1144. [10] FENG G, MELLOR R H, BERNSTEIN M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP[J]. Neuron, 2000, 28(1):41-51. [11] LU X H, YANG X W. Genetically-directed sparse neuronal labeling in BAC transgenic mice through mononucleotide repeat frameshift[J]. Sci Rep, 2017, 7:43915. [12] AKO R, WAKIMOTO M, EBISU H, et al. Simultaneous visualization of multiple neuronal properties with single-cell resolution in the living rodent brain[J]. Mol Cell Neurosci, 2011, 48(3):246-257. [13] LUO W, MIZUNO H, IWATA R, et al. Supernova:A versatile vector system for single-cell labeling and gene function studies in vivo[J]. Sci Rep, 2016, 6:35747. [14] MADISEN L, ZWINGMAN T A, SUNKIN S M, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain[J]. Nat Neurosci, 2010, 13(1):133-140. [15] KUHLMAN S J, HUANG Z J. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression[J]. PLoS One, 2008, 3(4):e2005. [16] LAMMEL S, LIM B K, RAN C, et al. Input-specific control of reward and aversion in the ventral tegmental area[J]. Nature, 2012, 491(7423):212-217. [17] KIM C K, YANG S J, PICHAMOORTHY N, et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain[J]. Nat Methods, 2016, 13(4):325-328. [18] LUO M. The nucleocapsid of vesicular stomatitis virus[J]. Sci China Life Sci, 2012, 55(4):291-300. [19] HABERL M G, VIANA DA SILVA S, GUEST J M, et al. An anterograde rabies virus vector for high-resolution large-scale reconstruction of 3D neuron morphology[J]. Brain Struct Funct, 2015, 220(3):1369-1379. [20] VAN DEN POL A N, OZDUMAN K, WOLLMANN G, et al. Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression[J]. J Comp Neurol, 2009, 516(6):456-481. [21] BEIER K, CEPKO C. Viral tracing of genetically defined neural circuitry[J]. J Vis Exp, 2012, 68:4253. [22] GREEN T J, ZHANG X, WERTZ G W, et al. Structure of the vesicular stomatitis virus nucleoprotein-RNA complex[J]. Science, 2006, 313(5785):357-360. [23] CHEN L Y, YAN Q, LU G L, et al. Several residues within the N-terminal arm of vesicular stomatitis virus nucleoprotein play a critical role in protecting viral RNA from nuclease digestion[J]. Virology, 2015, 478:9-17. [24] STOJDL D F, LICHTY B D, TENOEVER B R, et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents[J]. Cancer Cell, 2003, 4(4):263-275. [25] FANG X K, ZHANG S K, SUN X D, et al. Evaluation of attenuated VSVs with mutated M or/and G proteins as vaccine vectors[J]. Vaccine, 2012, 30(7):1313-1321. [26] GENOVE G, DEMARCO U, XU H Y, et al. A new transgene reporter for in vivo magnetic resonance imaging[J]. Nat Med, 2005, 11(4):450-454. |
[1] | 赵尚义 王远军. 基于磁共振图像和改进的UNet++模型区分阿尔茨海默症患者和健康人群[J]. 波谱学杂志, 0, (): 0-0. |
[2] | 鲁 晨 董健健 钟 凯. 9.4T下TX模型鼠脑DTI成像研究[J]. 波谱学杂志, 0, (): 0-0. |
[3] | 王 可 张英华 李雨晴 邹定华. 固体核磁共振技术在水泥基材料研究中的应用[J]. 波谱学杂志, 0, (): 0-0. |
[4] | 刘可文 刘紫龙 汪香玉 陈黎 李钊 吴光耀 刘朝阳. 基于级联卷积神经网络的前列腺磁共振图像分类[J]. 波谱学杂志, 0, (): 0-0. |
[5] | 闫 松 屠小青 彭 梅. 光泵抽运3He极化程度监控系统的设计与实现[J]. 波谱学杂志, 0, (): 0-0. |
[6] | 张一鸣 陈志雪 杨晓云. 丁氟螨酯的波谱学数据解析与结构确证[J]. 波谱学杂志, 0, (): 0-0. |
[7] | 王 强 魏树峰 王 铮 杨文晖. 基于粒子群与遗传算法的矩阵式梯度线圈优化设计[J]. 波谱学杂志, 0, (): 0-0. |
[8] | 王佳鑫 冯继文 陈俊飞 王立英 刘朝阳. 魔角旋转固体核磁共振探头中转子的研制[J]. 波谱学杂志, 0, (): 0-0. |
[9] | 赵智慧 刘表兰 闫小双 武帅帅 茹阁英 毛诗珍 冯继文. PSSS50-b-PNIPAM300嵌段共聚物在二元溶剂中自组装的NMR研究[J]. 波谱学杂志, 0, (): 0-0. |
[10] | 刘慧霞, 辛家祥, 魏达秀. 核自旋单重态的制备及其转化效率和寿命的影响因素分析 [J]. 波谱学杂志, 0, (): 0-0. |
[11] | 雷振宇, 梁欣苗#, 雷友义, 杨 丽, 冯继文. 固体核磁共振技术在锂/钠离子电池碳负极中的应用及研究进展 [J]. 波谱学杂志, 0, (): 0-0. |
[12] | 张之杰 李端秀 罗春 仇汝臣 邓宗武 张海禄. 晶体学辅助的2-吡啶甲酸固体13C化学位移理论计算归属[J]. 波谱学杂志, 0, (): 0-0. |
[13] | 包婉静 曾庆琦 余钫 秦蕾 陈智勇. 一种非连续微波探询信号的实现[J]. 波谱学杂志, 0, (): 0-0. |
[14] | 张芬芬 沈文斌 徐开兵 杨 明. 基于定量核磁共振氢谱测定新药替格瑞洛[J]. 波谱学杂志, 0, (): 0-0. |
[15] | 徐广永 董满园 马建锋 张利民.
固体核磁共振研究半晶聚-3-羟基丁酸酯和聚羟基丁酸戊酸酯的分子动力学(英文) [J]. 波谱学杂志, 0, (): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||