[1] Butzer P L, Wagner H J. Walsh series and the concept of a derivative. Appl Anal, 1973, 3: 29–46
[2] Schipp F. ¨Ubereinen Ableitung sbegriff von P L Butzer and H J Wagner. Mat Balkanica, 1974, 4: 541–546
[3] Schipp F, Wade W R, Simon P, P´al J. Walsh series: An introduction to dyadic harmonic analysis. Bristol-
New York: Adam Hilger, 1990
[4] Schipp F, Wade W R. A fundamental theorem of dyadic calculus for the unit square. Appl Anal, 1989,
34: 203–218
[5] Weisz F. Martingale Hardy spaces and their applications in Fourier-analysis. LNM 1568, Berlin: Springer,
1994
[6] Weisz F. Martingale Hardy spaces for 0 < p ≤ 1. Probab Th Rel Fields, 1990, 84: 361–376
[7] Weisz F. Martingale Hardy spaces and the dyadic derivative. Analysis Math, 1998, 24: 59–77
[8] Weisz F. Some maximal inequalities with respect to two-parameter dyadic derivative and Cesàro summability.
Applic Anal, 1996, 62: 223–238
[9] Weisz F. (Hp,Lp)-type inequalities for the two-dimensional dyadic derivative. Studia, Math, 1996, 120:
271–288
[10] Weisz F. Cesàro summability of one- and two-dimensional Walsh-Fourier series. Analysis Math, 1996, 22:
229–242
[11] Liu P D. Martingales and geometry in Banach spaces. Wuhan: Wuhan University Press, 1993
[12] Gát G. On the two-dimensional pointwise dyadic calculus. J Appr Theory, 1998, 92: 191–215
[13] Long R L. Martingale spaces and inequalities. Beijing: Peking University Press, 1993
[14] Fine N J. On the Walsh functions. Trans Amer Math Soc, 1949, 65: 372–414
|