Acta mathematica scientia,Series B

• Articles • Previous Articles     Next Articles

GENERALIZED HILBERT OPERATOR AND FEJÉR-RIESZ TYPE INEQUALITIES ON THE#br# POLYDISC

Li Songxiao; Stevo Stevi'c   

  1. Department of Mathematics, Jiaying University, Meizhou 514015, China
  • Received:2006-12-12 Revised:1900-01-01 Online:2009-02-20 Published:2009-02-20
  • Contact: Li Songxiao

Abstract:

Let f be a holomorphic function on the unit polydisc Dn, with Taylor expan-
sion
f(z) = ∑|k|=0 akzk ≡ ∑k1+···+kn=0 ak1,···, knzk11· · · zknn
where k = (k1, · · · , kn) ∈ Zn+. The authors define generalized Hilbert operator on Dn by
Hγ,n(f)(z) =|k|=0 i1,···,in≥0 ai1,···,in Πnj=1Γ( γj + kj + 1)Γ(kj + ij + 1) /Γ(kj + 1)Γ(kj + ijj + 2)zk,
where γ ∈ Cn, such that j > -1, j = 1, 2, · · · , n. An upper bound for the norm of the operator on Hardy spaces Hp(Dn) is found. The authors also present a Fejér-Riesz type inequality on the weighted Bergman space on Dn and find an invariant space for the generalized Hilbert operator.

Key words: Generalized Hilbert operator, Fejér-Riesz inequality, α-Bloch space

CLC Number: 

  • 47B38
Trendmd