Acta mathematica scientia,Series B
• Articles • Previous Articles Next Articles
Li Songxiao; Stevo Stevi'c
Received:
Revised:
Online:
Published:
Contact:
Abstract:
Let f be a holomorphic function on the unit polydisc Dn, with Taylor expan- sion f(z) = ∑∞|k|=0 akzk ≡ ∑∞k1+···+kn=0 ak1,···, knzk11· · · zknn where k = (k1, · · · , kn) ∈ Zn+. The authors define generalized Hilbert operator on Dn by Hγ,n(f)(z) =∑∞|k|=0 i1,···,in≥0 ai1,···,in Πnj=1Γ( γj + kj + 1)Γ(kj + ij + 1) /Γ(kj + 1)Γ(kj + ij +γj + 2)zk, where γ ∈ Cn, such that Rγj > -1, j = 1, 2, · · · , n. An upper bound for the norm of the operator on Hardy spaces Hp(Dn) is found. The authors also present a Fejér-Riesz type inequality on the weighted Bergman space on Dn and find an invariant space for the generalized Hilbert operator.
Key words: Generalized Hilbert operator, Fejér-Riesz inequality, α-Bloch space
CLC Number:
Li Songxiao; Stevo Stevic. GENERALIZED HILBERT OPERATOR AND FEJÉR-RIESZ TYPE INEQUALITIES ON THE#br# POLYDISC[J].Acta mathematica scientia,Series B, 2009, 29(1): 191-200.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbB/EN/10.1016/S0252-9602(09)60020-5
http://121.43.60.238/sxwlxbB/EN/Y2009/V29/I1/191
Cited