Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (6): 2443-2464.doi: 10.1007/s10473-024-0621-1
Previous Articles Next Articles
Jiajie HUA
Received:
2023-06-16
Revised:
2024-07-13
Published:
2024-12-06
About author:
Jiajie HUA, E-mail: jiajiehua@zjxu.edu.cn
Supported by:
CLC Number:
Jiajie HUA. THE STABILITY OF AF-RELATIONS[J].Acta mathematica scientia,Series B, 2024, 44(6): 2443-2464.
[1] Berg I D, Davidson K R.Almost commuting matrices and the Brown-Douglas-Fillmore theorem. Bull Amer Math Soc (NS), 1987, 16(1): 97-100 [2] Boca F P.Projections in rotation algebras and theta functions. Commun Math Phys, 1999, 202(2): 325-357 [3] Bratteli O, Elliott G A, Evans D E, et al.Noncommutative spheres Ⅰ. Internat J Math, 1991, 2(2): 139-166 [4] Bratteli O, Elliott G A, Evans D E, et al.Noncommutative spheres Ⅱ: Rational rotations. J Operator Theory, 1992, 27(1): 53-85 [5] Bratteli O, Kishimoto A.Noncommutative spheresⅢ, Irrational rotations. Commun Math Phys, 1992, 147(3): 605-624 [6] Brenken B A.Representations and automorphisms of the irrational rotation algebra. Pacific J Math, 1984, 111(2): 257-282 [7] Chakraborty S.Symmetrized non-commutative tori revisited. To appear in Journal of Noncommutative Geometry, arXiv:2204.11546 [8] Chakraborty S, Hua J J.Higher dimensional bott classes and the stability of rotation relations. Indiana Univ Math J, 2023, 72(6): 2285-2339 [9] Davidson K R.Almost commuting Hermitian matrices. Math Scand, 1985, 56(2): 222-240 [10] Echterhoff S, Lück W, Phillips N C, et al.The structure of crossed products of irrational rotation algebras by finite subgroups of ${\rm SL}_2(\mathbb{Z})$. J Reine Angew Math, 2010, 639: 173-221 [11] Eilers S, Loring T A.Computing contingencies for stable relations. Internat J Math, 1999, 10(3): 301-326 [12] Eilers S, Loring T A, Pedersen G K.Morphisms of extensions of $C^*$-algebras: pushing forward the Busby invariant. Adv Math, 1999, 147(1): 74-109 [13] Eilers S, Loring T A, Pedersen G K.Stability of anticommutation relations: an application of noncommutative CW complexes. J Reine Angew Math, 1998, 499: 101-143 [14] Elliott G A.On the K-theory of the $C^*$-algebra generated by a projective representation of a torsion free discrete abelian group// Operator Algebras and Group Representations, Vol. I (Neptun, 1980), Monogr Stud Math, 17. Boston, MA: Pitman, 1984: 157-184 [15] Exel R, Loring T A.Almost commuting unitary matrices. Proc Amer Math Soc, 1989, 106(4): 913-915 [16] Exel R, Loring T A.Invariants of almost commuting unitaries. J Funct Anal, 1991, 95(2): 364-376 [17] Fan Q, Fang X.Crossed products by finite group actions with certain tracial Rokhlin property. Acta Math Sci, 2018, 38B(3): 829-842 [18] Friis P, Rørdam M.Almost commuting self-adjoint matrices-a short proof of Huaxin Lin's theorem. J Reine Angew Math, 1996, 479: 121-131 [19] Farsi C, Watling N.$C^*$-algebras of dynamical systems on the non-commutative torus. Math Scand, 1994, 75(1): 101-110 [20] Farsi C, Watling N.Symmetrized non-commutative tori. Math Ann, 1993, 296(4): 739-741 [21] Gong G H, Lin H X.Almost multiplicative morphisms and $K$-theory. Internat J Math, 2000, 11(8): 983-1000 [22] Halmos P R. Some unsolved problems of unknown depth about operators on Hilbert space. Proc Roy Soc Edinburgh Sect A, 1976/77, 76(1): 67-76 [23] Hua J J. Stability of certain relations of three unitaries in $C^*$-algebras. Internat J Math, 2021, 32(9): Paper No. 2150065 [24] Hua J J. Stability of rotation relation of two unitaries with the flip action in $C^*$-algebras. J Math Anal Appl, 2022, 506(2): Paper No. 125690 [25] Hua J J.Stability of rotation relation of two unitaries with $\mathbb{Z}_3,$ $\mathbb{Z}_4$ and $\mathbb{Z}_6$-actions in $C^*$-algebras. Rocky Mountain J Math, 2023, 53(4): 1129-1154 [26] Hua J J, Fang X C, Xu X M.Continuity of functors with respect to generalized inductive limits. Front Math China, 2019, 14(3): 551-566 [27] Hua J J, Lin H X.Rotation algebras and the Exel trace formula. Canad J Math, 2015, 67(2): 404-423 [28] Hua J J, Wang Q Y.Stability of rotation relations in $C^{*}$-algebras. Canad J Math, 2021, 73(4): 1171-1203 [29] Hua J J, Wang Z J.Stability of rotation relation of two unitaries with the flip action in $C^*$-algebras, Ⅱ. Adv Math (China), 2024, 53(1): 177-192 [30] Kumjian A.On the $K$-theory of the symmetrized non-commutative torus. C R Math Rep Acad Sci Canada, 1990, 12(2/3): 87-89 [31] Lin H X.Almost commuting selfadjoint matrices and applications// Operator Algebras and Their Applications (Waterloo, ON, 1994/1995), Fields Inst Commun, vol 13. Providence, RI: Amer Math Soc, 1997: 193-233 [32] Lin H X.An Introduction to the Classification of Amenable $C^*$-algebras. River Edge, NJ: World Scientific Publishing, 2001 [33] Newman M. Integral Matrices.New York: Academic Press, 1972 [34] Phillips N C.Every simple higher dimensional noncommutative torus is an $AT$ algebra. arXiv: math.OA/0609783 [35] Rieffel M A.Dimension and stable rank in the $K$-theory of $C^*$-algebras. Proc London Math Soc, 1983, 46(2): 301-333 [36] Rieffel M A.Non-commutative tori-a case study of non-commutative differentiable manifolds. Contemporary Mathematics, 1990, 105: 191-211 [37] Rieffel M A.Projective modules over higher dimensioanl noncommutative tori. Canad J Math, 1988, 40(2): 257-338 [38] R$\o$rdam M, Larsen F, Laustsen N. An Introduction to $K$-theory for $C^*$-algebras. London Mathematical Society, Student Texts 49. Cambridge: Cambridge University Press, 2000 [39] Rosenthal P.Research Problems: Are almost commuting matrices near commuting matrices?. Amer Math Monthly, 1969, 76(8): 925-926 [40] Voiculescu D.Asymptotically commuting finite rank unitary operators without commuting approximants. Acta Sci Math (Szeged), 1983, 45: 429-431 [41] Voiculescu D.Remarks on the singular extension in the $C^*$-algebra of the Heisenberg group. J Operator Theory, 1981, 5(2): 147-170 [42] Walters S.Projective modules over the non-commutative sphere. J London Math Soc, 1995, 51(2): 589-602 [43] Walters S.Toroidal orbifolds of $\mathbb{Z}_3$ and $\mathbb{Z}_6$ symmetries of noncommutative tori. Nuclear physics B, 2015, 894: 496-526 [44] Wang Z J, Hu J Y, Hua J J.Stability of rotation relations of three unitaries with the flip action in $C^*$-algebras. Chinese Ann Math, Ser B, 2023, 44(4): 577-598 [45] Watatani Y.Toral automorphisms on irrational rotation algebras. Math Japon, 1981, 26(4): 479-484 |
|