Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (5): 1747-1765.doi: 10.1007/s10473-024-0507-2
Previous Articles Next Articles
Xueli KE1,2
Received:
2023-01-08
Revised:
2024-04-30
Online:
2024-10-25
Published:
2024-10-22
About author:
Xueli KE, E-mail,: kexueli123@126.com
Supported by:
CLC Number:
Xueli KE. GLOBAL UNIQUE SOLUTIONS FOR THE INCOMPRESSIBLE MHD EQUATIONS WITH VARIABLE DENSITY AND ELECTRICAL CONDUCTIVITY*[J].Acta mathematica scientia,Series B, 2024, 44(5): 1747-1765.
[1] Abidi H, Hmidi T. Résultats d'existence dans des espaces critiques pour le la MHD inhomogène. Ann Math Blaise Pascal, 2007, 14: 103-148 [2] Abidi H, Gui G. Global well-posedness for the 2-D inhomogeneous incompressible Navier-Stokers system with large initial data in critical spaces. Arch Ration Mech Anal, 2021, 242: 1533-1570 [3] Abidi H, Paicu M. Global existence for the magnetohydodynamic system in critical spaces. Proc Roy Soc Edinburgh Sect A, 2008, 138: 447-476 [4] Bahouri H, Chemin J, Danchin R.Fourier Analysis and Nonlinear Partial Differential Equations. A Serise of Comprehensive Studies in Mathematics. Berlin Heidelberg: Springer-Verlag, 2011 [5] Bie Q, Wang Q, Yao Z. Global well-posedness of the 3D incompressible MHD equations with variable density. Nonlinear Anal Real World Appl, 2019, 47: 85-105 [6] Chemin J. Perfect Incompressible Fluids.Oxford Lecture Ser Math Appl, vol 14. New York: The Clarendon Press, Oxford Univ Press, 1998 [7] Danchin R.On the well-posedness of the incompressible density-dependent Euler equations in the $L^p$ framework. J Differential Equations, 2010, 248: 2130-2170 [8] Danchin R, Bogusław P, Tolksdorf P. Lorentz spaces in action on pressureless systems arising from models of collective behavior. J Evol Equ, 2021, 21: 3103-3127 [9] Danchin R, Mucha P. A lagrangian approach for the incompressible Navier-Stokes equations with variable density. Comm Pure Appl Math, 2012, 65: 1458-1480 [10] Danchin R, Mucha P. Incompressible flows with piecewise constant density. Arch Ration Mech Anal, 2013, 207: 991-1023 [11] Danchin R, Mucha P.Critical Functional Framework and Maximal Regularity in Action on Systems of Incompressible Flows. Méoires de la Société Mathématique de France, vol 143. Paris: Soc Math France, 2015 [12] Danchin R, Wang S. Global unique solutions for the inhomogeneous Navier-Stokes equation with only bounded density, in critical regularity spaces. Comm Math Phys, 2023, 399: 1647-1688 [13] Duvaut G, Lions J. Inéquations en thermoélasticité et magnétohydrodynamique. Arch Rational Mech Anal, 1972, 46: 241-279 [14] Gerbeau J, Le Bris C. Existence of solution for a density-dependent magnetohydrodynamic equation. Adv Differential Equations, 1997, 2: 427-452 [15] Grafakos L. Classical Fourier Analysis.Graduate Texts in Mathematics. Heidelberg: Springer, 2014 [16] Gui G. Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity. J Funct Anal, 2014, 267: 1488-1539 [17] Huang J, Paicu M. Decay estimates of global solutions to 2D incompressible inhomogeneous Navier-Stokes system with variable viscosity. Discrete Contin Dyn Syst, 2014, 34: 4647-4669 [18] Huang J, Paicu M, Zhang P. Global solutions to 2-D inhomogeneous Navier-Stokes system with general velocity. J Math Pures Appl, 2013, 100: 806-831 [19] Ke X, Yuan B, Xiao Y. A Stability problem for the 3D magnetohydrodynamic equations near equilibrium. Acta Math Sci, 2021, 41B: 1107-1118 [20] Lions P.Mathematical Topics in Fluid Mechanics. Vol 1. Incompressible Models. New York: Oxford University Press, 1996 [21] Majda A, Bertozzi A.Vorticity and Incompressible Flow. Cambridge: Cambridge University Press, 2002 [22] Paicu M, Zhang P. Striated regularity of 2-D inhomogeneous incompressible Navier-Stokes system with variable viscosity. Comm Math Phys, 2020, 376: 385-439 [23] Paicu M, Zhang P, Zhang Z. Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density. Comm Partial Differential Equations, 2013, 38: 1208-1234 [24] Zhai X, Yin Z. Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations. J Differential Equations, 2017, 262: 1359-1412 |
[1] | Xiao SU, Shubin WANG. ON THE CAUCHY PROBLEM FOR THE GENERALIZED BOUSSINESQ EQUATION WITH A DAMPED TERM* [J]. Acta mathematica scientia,Series B, 2024, 44(5): 1766-1786. |
[2] | Zefu Feng, Jing Jia. THE GLOBAL WELL-POSEDNESS OF SOLUTIONS TO COMPRESSIBLE ISENTROPIC TWO-FLUID MAGNETOHYDRODYNAMICS IN A STRIP DOMAIN* [J]. Acta mathematica scientia,Series B, 2024, 44(5): 1997-2018. |
[3] | Fan YANG, Congming LI. WEAK-STRONG UNIQUENESS FOR THREE DIMENSIONAL INCOMPRESSIBLE ACTIVE LIQUID CRYSTALS [J]. Acta mathematica scientia,Series B, 2024, 44(4): 1415-1440. |
[4] | Saiguo Xu, Zhong Tan. THE STABILITY OF BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION AROUND THE HYDROSTATIC BALANCE [J]. Acta mathematica scientia,Series B, 2024, 44(4): 1466-1486. |
[5] | Zhong Tan, Xinliang Li, Hui Yang. ENERGY CONSERVATION FOR THE WEAK SOLUTIONS TO THE 3D COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOW [J]. Acta mathematica scientia,Series B, 2024, 44(3): 851-864. |
[6] | Bin Han, Ningan Lai, Andrei Tarfulea. THE GLOBAL EXISTENCE OF STRONG SOLUTIONS FOR A NON-ISOTHERMAL IDEAL GAS SYSTEM [J]. Acta mathematica scientia,Series B, 2024, 44(3): 865-886. |
[7] | Xiaoshan Wang, Zhongqian Wang, Zhe Jia. GLOBAL WEAK SOLUTIONS FOR AN ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH $p$-LAPLACIAN DIFFUSION AND LOGISTIC SOURCE [J]. Acta mathematica scientia,Series B, 2024, 44(3): 909-924. |
[8] | Shuang Chen, Shanshan Guo, Qiuju Xu. THE EXISTENCE AND UNIQUENESS OF TIME-PERIODIC SOLUTIONS TO THE NON-ISOTHERMAL MODEL FOR COMPRESSIBLE NEMATIC LIQUID CRYSTALS IN A PERIODIC DOMAIN [J]. Acta mathematica scientia,Series B, 2024, 44(3): 947-972. |
[9] | Cuntao xiao, Hua qiu, Zheng-an yao. THE GLOBAL EXISTENCE AND ANALYTICITY OF A MILD SOLUTION TO THE 3D REGULARIZED MHD EQUATIONS [J]. Acta mathematica scientia,Series B, 2024, 44(3): 973-983. |
[10] | Weixi LI, Rui XU, Tong YANG. GLOBAL WELL-POSEDNESS OF A PRANDTL MODEL FROM MHD IN GEVREY FUNCTION SPACES [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2343-2366. |
[11] | Thieu Huy NGUYEN, Truong Xuan PHAM, Thi Ngoc Ha VU, The Sac LE. EXISTENCE AND STABILITY OF PERIODIC AND ALMOST PERIODIC SOLUTIONS TO THE BOUSSINESQ SYSTEM IN UNBOUNDED DOMAINS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1875-1901. |
[12] | Xiaopan JIANG, Zhigang WU. POINTWISE SPACE-TIME BEHAVIOR OF A COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM IN DIMENSION THREE [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2113-2130. |
[13] | Jinlu LI, Zhaoyang YIN, Xiaoping ZHAI. GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2131-2148. |
[14] | Xueting Jin, Yuelong Xiao, Huan Yu. GLOBAL WELL-POSEDNESS OF THE 2D BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1293-1309. |
[15] | Yongfu YANG, Qiangchang JU, Shuang ZHOU. THE GLOBAL COMBINED QUASI-NEUTRAL AND ZERO-ELECTRON-MASS LIMIT OF NON-ISENTROPIC EULER-POISSON SYSTEMS [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1666-1680. |
|