[1] Frauendiener J, Klein C, Muhammad U, Stoilov N. Numerical study of Davey-Stewartson I systems. Appl Math, 2022, 149(1): 76-94 [2] Ismail M S, Taha T R. A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation. Mathematics and Computers in Simulation, 2007, 74(4/5): 302-311 [3] Kato T, Ponce G. Commutator estimates and the Euler and Navier-Stokes equations. Communications on Pure and Applied Mathematics, 1988, 41(7): 891-907 [4] Maierhofer G, Schratz K.Bridging the gap: symplecticity and low regularity on the example of the KdV equation. arXiv:2205.05024 [5] Ning C, Kou X, Wang Y. Low-regularity integrator for the Davey-Stewartson II system. Journal of Scientific Computing, 2024, 99: Art 10 [6] Ning C, Wu Y, Zhao X. An embedded exponential-type low-regularity integrator for mKdV equation. SIAM J Numer Anal, 2022, 60(3): 999-1025 [7] Schratz K, Wang Y, Zhao X. Low-regularity integrators for nonlinear Dirac equations. Mathematics of Computation, 2021, 90(327): 189-214 [8] Wang Y, Zhao X. A symmetric low-regularity integrator for nonlinear Klein-Gordon equation. Mathematics of Computation, 2022, 91(337): 2215-2245 [9] Wu Y, Yao F. A first-order Fourier integrator for the nonlinear Schrödinger equation on $\mathbb T $ without loss of regularity. Math Comp, 2022, 91(335): 1213-1235 [10] Wu Y, Zhao X. Embedded exponential-type low-regularity integrators for KdV equation under rough data. BIT Numerical Mathematics, 2022, 62(3): 1049-1090 [11] Wu Y, Zhao X. Optimal convergence of a second-order low-regularity integrator for the KdV equation. IMA J Numer Anal, 2022, 42(4): 3499-3528 |