Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (2): 721-751.doi: 10.1007/s10473-024-0219-7

Previous Articles     Next Articles

AN OPTIMAL CONTROL PROBLEM FOR A LOTKA-VOLTERRA COMPETITION MODEL WITH CHEMO-REPULSION

Diana I. HERNÁNDEZ, Diego A. RUEDA-GÓMEZ, Élder J. VILLAMIZAR-ROA*   

  1. Universidad Industrial de Santander, Escuela de Matemáticas, A.A. 678, Bucaramanga, Colombia
  • Received:2022-11-20 Revised:2023-01-08 Online:2024-04-25 Published:2024-04-16
  • Contact: *Élder J. VILLAMIZAR-ROA, E-mail: jvillami@uis.edu.co
  • Supported by:
    Vicerrectoría de Investigación y Extensión of Universidad Industrial de Santander, Colombia, project 3704.

Abstract: In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of $\mathbb{R^N},$ $N=2,3$. This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism. We prove the existence and uniqueness of weak-strong solutions, and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem, where the control is acting on the chemical signal. Posteriorly, we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory. Finally, we propose a discrete approximation scheme of the optimality system based on the gradient method, which is validated with some computational experiments.

Key words: Lotka-Volterra, chemo-repulsion, optimal control, optimality conditions

CLC Number: 

  • 35K51
Trendmd