Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (2): 721-751.doi: 10.1007/s10473-024-0219-7
Previous Articles Next Articles
Diana I. HERNÁNDEZ, Diego A. RUEDA-GÓMEZ, Élder J. VILLAMIZAR-ROA*
Received:
2022-11-20
Revised:
2023-01-08
Online:
2024-04-25
Published:
2024-04-16
Contact:
*Élder J. VILLAMIZAR-ROA, E-mail: jvillami@uis.edu.co
Supported by:
CLC Number:
Diana I. HERNÁNDEZ, Diego A. RUEDA-GÓMEZ, Élder J. VILLAMIZAR-ROA. AN OPTIMAL CONTROL PROBLEM FOR A LOTKA-VOLTERRA COMPETITION MODEL WITH CHEMO-REPULSION[J].Acta mathematica scientia,Series B, 2024, 44(2): 721-751.
[1] Bellomo N, Bellouquid A, Tao Y, Winkler M. Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math Models Methods Appl Sci, 2015, 25(9): 1663-1763 [2] Silva P B E, Guillén-González F, Perusato C F, Rodríguez-Bellido M A. Bilinear optimal control of the Keller-Segel logistic model in 2D-domains. Appl Math Optim, 2023, 87(3): Art 55 [3] Duarte-Rodríguez A, Ferreira L C, Villamizar-Roa E J. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete Contin Dyn Syst Ser B, 2019, 24(2): 423-447 [4] Feireisl E, Novotný A.Singular Limits in Thermodynamics of Viscous Fluids. Basel: Birkhäuser, 2009 [5] Guillén-González F, Mallea-Zepeda E, Rodríguez-Bellido M A. A regularity criterion for a 3D chemo-repulsion system and its application to a bilinear optimal control problem. SIAM J Control Optim, 2020, 58(3): 1457-1490 [6] Guillén-González F, Mallea-Zepeda E, Rodríguez-Bellido M A. Optimal bilinear control problem related to a chemo-repulsion system in 2D domains. ESAIM Control Optim Calc Var, 2020, 26: Art 29 [7] Guillén-González F, Mallea-Zepeda E, Villamizar-Roa E J. On a bi-dimensional chemo-repulsion model with nonlinear production and a related optimal control problem. Acta Appl Math, 2020, 170: 963-979 [8] Gunzburger M D, Manservisi S. Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with boundary control. SIAM J Control Optim, 2000, 39: 594-634 [9] Gunzburger M D.Perspectives in Flow Control and Optimization. Philadelphia: SIAM, 2002 [10] Hurst J L, Beyon R J. Scent wars: the chemobiology of competitive signalling in mice. BioEssays, 2004, 26: 1288-1298 [11] Lions J L.Quelques Métodes de Résolution des Problèmes aux Limites Non linéares. Paris: Dunod, 1969 [12] Liu C, Yuang Y. Optimal control of a fully parabolic attraction-repulsion chemotaxis model with logistic source in 2D. Appl Math Optim, 2022, 85(1): Art 7 [13] López-Ríos J, Villamizar-Roa E J. An optimal control problem related to a 3D-chemotaxis-Navier-Stokes model. ESAIM Control Optim Calc Var, 2021, 27: Art 58 [14] Lorca S, Mallea-Zepeda E, Villamizar-Roa E J. Stationary solutions to a chemo-repulsion system and a related optimal bilinear control problem. Bull Braz Math Soc (N S), 2023, 54: Art 39 [15] Lotka A J.Elements of Physical Biology. Baltimore: Williams and Wilkins Co, 1925 [16] Mallea-Zepeda E, Ortega-Torres E, Villamizar-Roa E J. An optimal control problem for the Navier-Stokes-α system. J Dyn Control Syst, 2023, 29(1): 129-156 [17] Rodríguez-Bellido M A, Rueda-Gómez D A, Villamizar-Roa E J. On a distributed control problem for a coupled chemotaxis-fluid model. Discrete Contin Dyn Syst Ser B, 2018, 23: 557-571 [18] Simon J. Compact sets in the space Lp(0,T;B). Ann Mat Pura Appl,1987, 146: 65-96 [19] Tello J I, Wrzosek D. Inter-species competition and chemorepulsion. J Math Anal Appl, 2018, 459: 1233-1250 [20] Troltzsch F.Optimal Control of Partial Differential Equations. Theory, Methods and Applications. Providence, RI: Amer Math Soc, 2010 [21] Volterra V. Variazioni e fluttuazioni del numero díndividui in specie animali conviventi. Mem R Accad Naz Dei Lincei Ser VI, 1926, 2: 31-113 [22] Zimmer R K, Butman C A. Chemical signaling processes in the marine environment. Biol Bull, 2000, 198: 168-187 [23] Zowe J, Kurcyusz S. Regularity and stability for the mathematical programming problem in Banach spaces. Appl Math Optim, 1979, 5: 49-62 |
[1] | Yuxia HAO, Wantong LI, Jiabing WANG, Wenbing XU. ENTIRE SOLUTIONS OF LOTKA-VOLTERRA COMPETITION SYSTEMS WITH NONLOCAL DISPERSAL* [J]. Acta mathematica scientia,Series B, 2023, 43(6): 2347-2376. |
[2] | Lingling Jian. THE OPTIMAL DEDUCTIBLE AND COVERAGE IN INSURANCE CONTRACTS AND EQUILIBRIUM RISK SHARING POLICIES* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1347-1364. |
[3] | Zhaojie Zhou, Fangyuan Wang, Xiangcheng Zheng. ANALYSIS AND DISCRETIZATION FOR AN OPTIMAL CONTROL PROBLEM OF A VARIABLE-COEFFICIENT RIESZ-FRACTIONAL DIFFUSION EQUATION WITH POINTWISE CONTROL CONSTRAINTS* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 640-654. |
[4] | Bin CHEN, Sergey A. TIMOSHIN. OPTIMAL CONTROL OF A POPULATION DYNAMICS MODEL WITH HYSTERESIS [J]. Acta mathematica scientia,Series B, 2022, 42(1): 283-298. |
[5] | Qixia ZHANG. MAXIMUM PRINCIPLE FOR STOCHASTIC OPTIMAL CONTROL PROBLEM WITH DISTRIBUTED DELAYS [J]. Acta mathematica scientia,Series B, 2021, 41(2): 437-449. |
[6] | Xianzhong ZENG, Lingyu LIU, Weiyuan XIE. EXISTENCE AND UNIQUENESS OF THE POSITIVE STEADY STATE SOLUTION FOR A LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH A CROWDING TERM [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1961-1980. |
[7] | Linjie MA, Bin LIU. DYNAMIC ANALYSIS AND OPTIMAL CONTROL OF A FRACTIONAL ORDER SINGULAR LESLIE-GOWER PREY-PREDATOR MODEL [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1525-1552. |
[8] | Tadeusz ANTCZAK, Yogendra PANDEY, Vinay SINGH, Shashi Kant MISHRA. ON APPROXIMATE EFFICIENCY FOR NONSMOOTH ROBUST VECTOR OPTIMIZATION PROBLEMS [J]. Acta mathematica scientia,Series B, 2020, 40(3): 887-902. |
[9] | Xian-jia WANG, Rui DONG, Lin CHEN. THE OPTIMAL CONTROL FOR PROMOTING THE COOPERATION IN EVOLUTION GAME GENERATED BY PRISONER'S DILEMMA [J]. Acta mathematica scientia,Series B, 2018, 38(1): 73-92. |
[10] | Tadeusz ANTCZAK. OPTIMALITY CONDITIONS AND DUALITY RESULTS FOR NONSMOOTH VECTOR OPTIMIZATION PROBLEMS WITH THE MULTIPLE INTERVAL-VALUED OBJECTIVE FUNCTION [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1133-1150. |
[11] | A. JAJARMI, M. HAJIPOUR. AN EFFICIENT PARALLEL PROCESSING OPTIMAL CONTROL SCHEME FOR A CLASS OF NONLINEAR COMPOSITE SYSTEMS [J]. Acta mathematica scientia,Series B, 2017, 37(3): 703-721. |
[12] | Limeng WU, Juan ZHANG, Mingkang NI, Haibo LU. ASYMPTOTIC SOLUTION OF SINGULARLY PERTURBED HYBRID DYNAMICAL SYSTEMS [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1457-1466. |
[13] | Chen FEI, Weiyin FEI. OPTIMAL CONTROL OF MARKOVIAN SWITCHING SYSTEMS WITH APPLICATIONS TO PORTFOLIO DECISIONS UNDER INFLATION [J]. Acta mathematica scientia,Series B, 2015, 35(2): 439-458. |
[14] | Qiu Jinghui. CONE--DIRECTED CONTINGENT DERIVATIVES AND GENERALIZED PREINVEX SET-VALUED OPTIMIZATION [J]. Acta mathematica scientia,Series B, 2007, 27(1): 211-218. |
[15] | Wang Lijuan; He Peijie. SECOND-ORDER OPTIMALITY CONDITIONS FOR OPTIMAL CONTROL PROBLEMS GOVERNED BY 3-DIMENSIONAL NEVIER--STOKES EQUATIONS [J]. Acta mathematica scientia,Series B, 2006, 26(4): 729-734. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 5
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 45
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|