Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (1): 143-160.doi: 10.1007/s10473-024-0107-1
Previous Articles Next Articles
Yuecai Han1,2, Dingwen Zhang1,†
Received:
2022-10-25
Revised:
2023-07-23
Online:
2024-02-25
Published:
2024-02-27
Contact:
† Dingwen Zhang, E-mail:zhangdw20@mails.jlu.edu.cn
About author:
Yuecai Han, E-mail: hanyc@jlu.edu.cn
Supported by:
CLC Number:
Yuecai Han, Dingwen Zhang. NADARAYA-WATSON ESTIMATORS FOR REFLECTED STOCHASTIC PROCESSES*[J].Acta mathematica scientia,Series B, 2024, 44(1): 143-160.
[1] Bertola G, Svensson LEO. Stochastic devaluation risk and the empirical fit of target-zone models. Rev Econ Stud, 1993, 60: 689-712 [2] Budhiraja A, Lee C. Long time asymptotics for constrained diffusions in polyhedral domains. Stoch Process Their Appl, 2007, 117(8): 1014-1036 [3] Bo L, Wang Y, Yang X. Some integral functionals of reflected SDEs and their applications in finance. Quant Financ, 2010, 11: 343-348 [4] regulated market: a structural approach. Quant Financ, 2011, 11: 1695-1702 [5] Bo L, Wang Y, Yang X, Zhang G. Maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes. J Stat Plan Infer, 2011, 141: 588-596 [6] Bo L, Wang Y, Yang X. First passage times of (reflected) Ornstein-Uhlenbeck processes over a random jump boundaries. J Appl Prob, 2011, 48: 723-732 [7] Cholaquidis A, Fraiman R, Mordecki E, Papalardo C. Level sets and drift estimation for reflected Brownian motion with drift. Stat Sin, 2021, 31: 29-51 [8] Fan J, Gijbels I.Variable bandwidth and local linear regression smoothers. Ann Statist, 1992, 20: 2008-2036 [9] Fabienne C, Nicolas M. Nonparametric estimation in fractional SDE. Stat Infer Stoch Proc, 2019, 22: 359-382 [10] Harrison J M.Brownian Motion and Stochastic Flow Systems. New York: Wiley, 1985 [11] Harrison J M.Brownian Models of Performance and Control. New York: Cambridge University Press, 2013 [12] Hu Y, Lee C. Drift parameter estimation for a reflected fractional Brownian motion based on its local time. J Appl Probab, 2013, 50: 592-597 [13] Hu Y, Lee C, Lee M H, Song J. Parameter estimation for reflected Ornstein-Uhlenbeck processes with discrete observations. Stat Infer Stoch Proc, 2015, 18: 279-291 [14] Han Z, Hu Y, Lee C. Optimal pricing barriers in a regulated market using reflected diffusion processes. Quant Financ, 2016, 16: 639-647 [15] Hu Y, Xi Y. Estimation of all parameters in the reflected Ornstein-Uhlenbeck process from discrete observations. Stat Probab Lett, 2021, 174: 1-8 [16] Karlin S, Taylor H M.A Second Course in Stochastic Processes. New York: Academic Press, 1981 [17] Karatzas I, Shreve S E.Brownian Motion and Stochastic Calculus. New York: Springer, 1991 [18] Krugman P R. Target zones and exchange rate dynamics. Q J Econ, 1991, 106: 669-682 [19] Lions P L, Sznitman A S. Stochastic differential equations with reflecting boundary conditions. Commun Pure Appl Math, 1984, 37: 511-537 [20] Lépingle D. Euler scheme for reflected stochastic differential equations. Math Comput Simul, 1995, 38: 119-126 [21] Lee C, Bishwal J P N, Lee M H. Sequential maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes. J Stat Plan Infer, 2012, 142: 1234-1242 [22] Long H, Qian L. Nadaraya-Watson estimator for stochastic processes driven by stable Lévy noises. Electron J Stat, 2013, 7: 1387-1418 [23] Meyn S P, Tweedie R L.Markov Chains and Stochastic Stability. London: Springer, 1993 [24] Mishra M N, Prakasa Rao B L S. Nonparameteric estimation of trend for stochastic differential equations driven by fractional Brownian motion. Stat Infer Stoch Proc, 2011, 14: 101-109 [25] Nadaraya E A. On estimating regression. Theory Probab Appl, 1964, 9: 141-142 [26] Protter PE.Stochastic Integration and Differential Equations. Heidelberg: Springer, 2004 [27] Ricciardi L M, Sacerdote L. On the probability densities of an Ornstein-Uhlenbeck process with a reflecting boundary. J Appl Probab, 1987, 24: 355-369 [28] Saussereau B. Nonparametric inference for fractional diffusion. Bernoulli, 2014, 20: 878-918 [29] Watson G S. Smooth regression analysis. Sankhya Ser A, 1964, 26: 359-372 [30] Whitt W. Stochastic-Process Limits. New York: Springer, 2002 [31] Ward A R, Glynn P W. A diffusion approximation for a Markovian queue with reneging. Queueing Syst, 2003, 43: 103-128 [32] Ward A R, Glynn P W. Properties of the reflected Ornstein-Uhlenbeck process. Queueing Syst, 2003, 44: 109-123 [33] Ward A R, Glynn P W. A diffusion approximation for a GI/GI/1 queue with balking or reneging. Queueing Syst, 2005, 50: 371-400 [34] Wu Z, Xiao H. Multi-dimensional reflected backward stochastic differential equations and the comparison theorem. Acta Math Sci, 2010, 30B: 1819-1836 [35] Zang Q, Zhang L. Parameter estimation for generalized diffusion processes with reflected boundary. Sci China-Math, 2016, 59: 1163-1174 |
|