Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (6): 2589-2596.doi: 10.1007/s10473-023-0616-3
Previous Articles Next Articles
Meiqing XU
Received:
2022-04-29
Revised:
2023-06-02
Published:
2023-12-08
About author:
Meiqing XU, E-mail: xmq157@sjtu.edu.cn
Supported by:
CLC Number:
Meiqing XU. ON A SUPER POLYHARMONIC PROPERTY OF A HIGHER-ORDER FRACTIONAL LAPLACIAN*[J].Acta mathematica scientia,Series B, 2023, 43(6): 2589-2596.
[1] Cao D, Dai W, Qin G, et al. Super poly-harmonic properties, Liouville theorems and classification of nonnegative solutions to equations involving higher-order fractional Laplacians. Transactions of the American Mathematical Society, 2021, 374(7): 4781-4813 [2] Chen W, Li C, Ou B, et al. Qualitative properties of solutions for an integral equation. Discrete & Continuous Dynamical Systems, 2005, 12(2): 347 [3] Chen W, Li C, Li Y, et al. A direct method of moving planes for the fractional Laplacian. Advances in Mathematics, 2017, 308: 404-437 [4] Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 2007, 60(1): 67-112 [5] Chen W, Li C, Ou B, et al. Classification of solutions for an integral equation. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 2006, 59(3): 330-343 [6] Wei J, Xu X. Classification of solutions of higher order conformally invariant equations. Mathematische Annalen, 1999, 313(2): 207-228 [7] Chen W, Li C. Super polyharmonic property of solutions for PDE systems and its applications. Communications on Pure & Applied Analysis, 2013, 12(6): 2497 [8] Fang Y, Chen W. A Liouville type theorem for poly-harmonic Dirichlet problems in a half space. Advances in Mathematics, 2012, 229(5): 2835-2867 [9] Chen W, Fang Y, Li C, et al. Super poly-harmonic property of solutions for Navier boundary problems on a half space. Journal of Functional Analysis, 2013, 265(8): 1522-1555 [10] Dai W, Liu Z, Qin G L. Classification of nonnegative solutions to static Schrödinger-Hartree-Maxwell type equations. SIAM Journal on Mathematical Analysis, 2021, 53(2): 1379-1410 [11] Cheng T, Liu S. A Liouville type theorem for higher order Hardy-H'enon equation in $\mathbb{R}^n$. Journal of Mathematical Analysis and Applications, 2016, 444(1): 370-389 [12] Zhuo R, Li Y. A Liouville theorem for the higher-order fractional Laplacian. Communications in Contemporary Mathematics, 2019, 21(2): 1850005 [13] Cheng C, Lü Z, Lü Y, et al. A direct method of moving planes for the system of the fractional Laplacian. Pacific Journal of Mathematics, 2017, 290(2): 301-320 [14] Zhuo R, Li C. Classification of anti-symmetric solutions to nonlinear fractional Laplace equations. Calculus of Variations and Partial Differential Equations, 2022, 61(1): 1-23 [15] Zhuo R. Weighted polyharmonic equation with Navier boundary conditions in a half space. Science China Mathematics, 2017, 60(3): 491-510 [16] Li C, Liu C, Wu Z, Xu H, et al. Non-negative solutions to fractional Laplace equations with isolated singularity. Advances in Mathematics, 2020, 373: 107329 [17] Le P. Classification of solutions to higher fractional order systems. Acta Mathematica Scientia, 2021, 41B(4): 1302-1320 [18] Guo Q, Zhao L. Positive solutions with high energy for fractional Schrödinger equations. Acta Mathematica Scientia, 2023, 43B(4): 1116-1130 [19] Li G, Yang T. The existence of a nontrivial weak solution to a double critical problem involving a fractional Laplacian in $\mathbb{R}^N$ with a Hardy term. Acta Mathematica Scientia, 2020, 40B(6): 1808-1830 [20] Jiang C, Liu Z, Zhou L, et al. Blow-up in a fractional Laplacian mutualistic model with Neumann boundary conditions. Acta Mathematica Scientia, 2022, 42B(5): 1809-1816 [21] Wang P, Niu P. A priori bounds and the existence of positive solutions for weighted fractional systems. Acta Mathematica Scientia, 2021, 41B(5): 1547-1568 [22] Moussaoui A, Velin J. Existence and boundedness of solutions for systems of quasilinear elliptic equations. Acta Mathematica Scientia, 2021, 41B(2): 397-412 [23] Nyamoradi N, Razani A. Existence to fractional critical equation with Hardy-Littlewood-Sobolev nonlinearities. Acta Mathematica Scientia, 2021, 41B(4): 1321-1332 [24] Chen Y, Wei L, Zhang Y, et al. The asymptotic behavior and symmerty of positive solutions to $p$-Lapalcian equations in a half-space. Acta Mathematica Scientia, 2022, 42B(5): 2149-2164 [25] Bucur C. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure and Applied Analysis, 2016, 15(2): 657-699 [26] Stein E M.Singular Integrals and Differentiability Properties of Functions (PMS-30), Princeton: Princeton University Press, 2016 [27] Zhuo R, Chen W, Cui X, et al.A Liouville theorem for the fractional Laplacian. arXiv preprint arXiv:1401.7402 |
[1] | Hong Wang. HAMILTON-JACOBI EQUATIONS FOR A REGULAR CONTROLLED HAMILTONIAN SYSTEM AND ITS REDUCED SYSTEMS* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 855-906. |
[2] | Huafei DI, Weijie Rong. THE REGULARIZED SOLUTION APPROXIMATION OF FORWARD/BACKWARD PROBLEMS FOR A FRACTIONAL PSEUDO-PARABOLIC EQUATION WITH RANDOM NOISE* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 324-348. |
[3] | Chao Jiang, Zuhan Liu, Ling Zhou. BLOW-UP IN A FRACTIONAL LAPLACIAN MUTUALISTIC MODEL WITH NEUMANN BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1809-1816. |
[4] | Shuhua WANG, Baohuai SHENG. LEARNING RATES OF KERNEL-BASED ROBUST CLASSIFICATION [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1173-1190. |
[5] | Phuong LE. CLASSIFICATION OF SOLUTIONS TO HIGHER FRACTIONAL ORDER SYSTEMS [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1302-1320. |
[6] | Gongbao LI, Tao YANG. THE EXISTENCE OF A NONTRIVIAL WEAK SOLUTION TO A DOUBLE CRITICAL PROBLEM INVOLVING A FRACTIONAL LAPLACIAN IN $\mathbb{R}^N$ WITH A HARDY TERM [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1808-1830. |
[7] | Xingxiao LI, Ruina QIAO, Yangyang LIU. ON THE COMPLETE 2-DIMENSIONAL λ-TRANSLATORS WITH A SECOND FUNDAMENTAL FORM OF CONSTANT LENGTH [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1897-1914. |
[8] | Jidong HAO, Heping WANG. STRONG EQUIVALENCES OF APPROXIMATION NUMBERS AND TRACTABILITY OF WEIGHTED ANISOTROPIC SOBOLEV EMBEDDINGS [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1765-1782. |
[9] | Ahmed YOUSSFI, Ghoulam OULD MOHAMED MAHMOUD. ON SINGULAR EQUATIONS INVOLVING FRACTIONAL LAPLACIAN [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1289-1315. |
[10] | Jinguo ZHANG, Tsing-San HSU. MULTIPLICITY OF POSITIVE SOLUTIONS FOR A NONLOCAL ELLIPTIC PROBLEM INVOLVING CRITICAL SOBOLEV-HARDY EXPONENTS AND CONCAVE-CONVEX NONLINEARITIES [J]. Acta mathematica scientia,Series B, 2020, 40(3): 679-699. |
[11] | Kun CHENG, Qi GAO. SIGN-CHANGING SOLUTIONS FOR THE STATIONARY KIRCHHOFF PROBLEMS INVOLVING THE FRACTIONAL LAPLACIAN IN RN [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1712-1730. |
[12] | Congming LI, Zhigang WU. RADIAL SYMMETRY FOR SYSTEMS OF FRACTIONAL LAPLACIAN [J]. Acta Mathematica Scientia, 2018, 38(5): 1567-1582. |
[13] | Mahmood POURGHOLAMHOSSEIN, Mohammad ROUZBEHANI, Massoud AMINI. CHAIN CONDITIONS FOR C*-ALGEBRAS COMING FROM HILBERT C*-MODULES [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1163-1173. |
[14] | Kuo-Shou CHIU. ASYMPTOTIC EQUIVALENCE OF ALTERNATELY ADVANCED AND DELAYED DIFFERENTIAL SYSTEMS WITH PIECEWISE CONSTANT GENERALIZED ARGUMENTS [J]. Acta mathematica scientia,Series B, 2018, 38(1): 220-236. |
[15] | Wei DAI, Zhao LIU. CLASSIFICATION OF POSITIVE SOLUTIONS TO A SYSTEM OF HARDY-SOBOLEV TYPE EQUATIONS [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1415-1436. |
|