Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (6): 2483-2492.doi: 10.1007/s10473-023-0610-9
Previous Articles Next Articles
Jia LIU†, Saisai SHI, Yuan ZHANG
Received:
2022-06-08
Revised:
2023-05-12
Published:
2023-12-08
Contact:
†Jia LIU, E-mail: liujia860319@163.com
About author:
Saisai SHI, E-mail: saisai_shi@126.com; Yuan ZHANG, E-mail: 120210066@aufe.edu.cn
Supported by:
CLC Number:
Jia LIU, Saisai SHI, Yuan ZHANG. ON THE GRAPHS OF PRODUCTS OF CONTINUOUS FUNCTIONS AND FRACTAL DIMENSIONS*[J].Acta mathematica scientia,Series B, 2023, 43(6): 2483-2492.
[1] Balka R. Dimensions of graphs of prevalent continuous maps. J Fractal Geom, 2016, 3: 407-428 [2] Balka R, Buczolich Z, Elekes M. The topological Hausdorff dimension and level sets of generic continuous functions on fractals. Chaos, Solitons & Fractals, 2011, 45(12): 1579-1589 [3] Balka R, Buczolich Z, Elekes M. A new fractal dimension: the topological Hausdorff dimension. Adv Math, 2015, 274: 881-927 [4] Bayart F, Heurteaux Y.On the Hausdorff dimension of graphs of prevalent continuous functions on compact sets//Barral J, Seuret S. Further Developments in Fractals and Related Fields: Mathematical Foundations and Connections (Trends in Mathematics). New York: Birkhauser/Spinger, 2013: 25-34 [5] Dougherty R. Examples of non-shy sets. Fund Math, 1994, 144: 73-88 [6] Falconer K J.Fractal Geometry: Mathematical Foundations and Applications. 3rd ed. Chichester: John Wiley & Sons, 2014 [7] Falconer K J, Fraser J M. The horizon problem for prevalent surfaces. Math Proc Cambridge Philos Soc, 2011, 152(2): 355-372 [8] Gruslys V, Jonušas J, Mijović V, et al. Dimensions of prevalent continuous functions. Monatsh Math, 2012, 166(2): 153-180 [9] Hyde J, Laschos V, Olsen L, et al. On the box dimensions of graphs of typical continuous functions. J Math Anal Appl, 2012, 391(2): 567-581 [10] Liu J, Liu D Z. On the decomposition of continuous functions and dimensions. Fractals, 2021, 28(1): 2050007-1-6 [11] Liu J, Tan B, Wu J. Graphs of continuous functions and packing dimension. J Math Anal Appl, 2016, 435(2): 1099-1106 [12] Liu J, Wu J. A remark on decomposition of continuous functions. J Math Anal Appl, 2013, 401(1): 404-406 [13] Mauldin R D, Williams S C. On the Hausdorff dimension of some graphs. Trans Amer Math Soc, 1986, 298(2): 793-803 [14] Verma M, Priyadarshi A. Graph of continuous functions and fractal dimension. arxiv:2202.11502v1 [15] Wingren P. Dimensions of graphs of functions and lacunary decompositions of spline approximations. Real Anal Exchange, 2000, 26(1): 17-26 [16] Xiao Z Y.The classification of states for skew product Markov chains (in Chinese). Acta Math Sci, 2003, 23A(3): 306-313 [17] Zhang X M, Hu D H. The dimensions of the range of random walks in time-random environments. Acta Math Sci, 2006, 26B(4): 615-628 |
[1] | Qinghui LIU, Zhiyi Tang. THE HAUSDORFF DIMENSION OF THE SPECTRUM OF A CLASS OF GENERALIZED THUE-MORSE HAMILTONIANS* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 1997-2004. |
[2] | Yajuan ZHAO, Yongsheng LI, Wei YAN, Xiangqian YAN. ON THE DIMENSION OF THE DIVERGENCE SET OF THE OSTROVSKY EQUATION [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1607-1620. |
[3] | Jun WANG, Zhenlong CHEN. HITTING PROBABILITIES AND INTERSECTIONS OF TIME-SPACE ANISOTROPIC RANDOM FIELDS [J]. Acta mathematica scientia,Series B, 2022, 42(2): 653-670. |
[4] | Dan LI, Junfeng LI, Jie XIAO. AN UPBOUND OF HAUSDORFF'S DIMENSION OF THE DIVERGENCE SET OF THE FRACTIONAL SCHRÖDINGER OPERATOR ON Hs(Rn) [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1223-1249. |
[5] | Jianfeng ZHOU, Zhong TAN. REGULARITY OF WEAK SOLUTIONS TO A CLASS OF NONLINEAR PROBLEM [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1333-1365. |
[6] | Zhenliang ZHANG, Chunyun CAO. ON POINTS CONTAIN ARITHMETIC PROGRESSIONS IN THEIR LÜROTH EXPANSION [J]. Acta mathematica scientia,Series B, 2016, 36(1): 257-264. |
[7] | CHEN Zhen-Long. ON INTERSECTIONS OF INDEPENDENT NONDEGENERATE DIFFUSION PROCESSES [J]. Acta mathematica scientia,Series B, 2014, 34(1): 141-161. |
[8] | HU Dong-Gang, HU Xue-Hai. ARBITRARILY LONG ARITHMETIC PROGRESSIONS FOR CONTINUED FRACTIONS OF LAURENT SERIES [J]. Acta mathematica scientia,Series B, 2013, 33(4): 943-949. |
[9] | CHEN Zhen-Long. FRACTAL PROPERTIES OF POLAR SETS OF RANDOM STRING PROCESSES [J]. Acta mathematica scientia,Series B, 2011, 31(3): 969-992. |
[10] | CHEN Zhen-Long, LI Hui-Qiong. POLAR SETS OF MULTIPARAMETER BIFRACTIONAL BROWNIAN SHEETS [J]. Acta mathematica scientia,Series B, 2010, 30(3): 857-872. |
[11] | Chen Zhenlong. INTERSECTIONS AND POLAR FUNCTIONS OF FRACTIONAL BROWNIAN SHEETS [J]. Acta mathematica scientia,Series B, 2008, 28(4): 779-796. |
[12] | Gao Junyang; Qiao Jianyong. CONTINUITY AND HAUSDORFF DIMENSION OF JULIA SET CONCERNING YANG-LEE ZEROS [J]. Acta mathematica scientia,Series B, 2008, 28(3): 530-536. |
[13] | Hu Dihe; Zhang Xiaomin. THE DIMENSION FOR RANDOM SUB-SELF-SIMILAR SET [J]. Acta mathematica scientia,Series B, 2007, 27(3): 561-573. |
[14] | Hu Dihe; Zhang Xiaomin. THE RANDOM SHIFT SET AND RANDOM SUB-SELF-SIMILAR SET [J]. Acta mathematica scientia,Series B, 2007, 27(2): 267-273. |
[15] | Zhong Yuquan; Hu Dihe. UNIFORM PACKING DIMENSION RESULTS FOR MULTIPARAMETER STABLE PROCESSES [J]. Acta mathematica scientia,Series B, 2007, 27(1): 1-10. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 6
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 50
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|