[1] Abkar A, Hedenmalm H. A Riesz representation formula for super-biharmonic functions. Anna Acad Sci Fenn Math, 2001, 26: 305-324 [2] Abkar A. Application of a Riesz-type formula to weighted Bergman spaces. Proc Amer Math Soc, 2003, 131: 155-164 [3] Abkar A. Norm approximation by polynomials in some weighted Bergman spaces. J Funct Anal, 2002, 191: 224-240 [4] Abkar A.Non-radial weights and polynomial approximation in spaces of analytic functions. Complex Var Elliptic Equ, doi:10.1080/17476933.2022.2112189 [5] Carleman T. Über die approximation analytischer funktionen durch lineare Aggregate von vorgegebenen Potenzen. Ark Mat Astr Fys, 1923, 17: 1-30 [6] Cascante C, Fàbrega J, Pascuas D. Muckenhoupt type weights and Berezin formulas for Bergman spaces. J Math Anal Appl, 2021, 504: 125481 [7] Duren P, Gallardo-Gutiérrez E A, Montes-Rodríguez A. A Paley-Wiener theorem for Bergman spaces with application to invariant subspaces. J London Math Soc, 2007, 39: 459-466 [8] Farrell O J. On approximation to an analytic function by polynomials. Bull Amer Math Soc, 1934, 40: 908-914 [9] Hedberg L I. Approximation in the mean by analytic functions. Trans Amer Math Soc, 1972, 163: 157-171 [10] Hedenmalm H, Korenblum B, Zhu K.Theory of Bergman Spaces. Graduate Texts in Mathematics, 199. New York: Springer-Verlag, 2000 [11] Hu Z, Lv X, Schuster A P. Bergman spaces with exponential weights. J Funct Anal, 2019, 276: 1402-1429 [12] Korhonen T, Rättyä J. Zero sequences factorization and sampling measures for weighted Bergman spaces. Math Z, 2019, 291: 1145-1173 [13] Mergelyan S N. On the completeness of systems of analytic functions. Uspehi Mat Nauk, 1953, 8: 3-63; English Transl, Amer Math Soc Transl, 1962, 19: 109-136 [14] Peláez J A, Rättya J. Weighted Bergman spaces induced by rapidly increasing weights. Memoirs of the American Mathematical Society, 2014, 227: 1066 [15] Zhu K.Analysis on Fock Spaces. Graduate Texts in Mathematics, 263. New York: Springer-Verlag, 2012 |