[1] Earle C J. The Teichmüller distance is differentiable. Duke Math J, 1977, 44:389-397
[2] Earle C J, Gardiner F P, Lakic N. Teichmüller spaces with asymptotic conformal equivalence. No. IHESM-95-60. SCAN-9507105, 1994
[3] Earle C J, Gardiner F P, Lakic N. Asymptotic Teichmüller space. Part Ⅰ:The complex structure, Contemporary Math, 2000, 256:17-38
[4] Earle C J, Gardiner F P, Lakic N. Asymptotic Teichmüller space. Part Ⅱ:The metric structure, Contemporary Math, 2004, 355:187-219
[5] Earle C J, Kra I, Krushkal' S L. Holomorphic Motions and Teichmüller spaces. Trans Amer Math Soc, 1994,343:927-948
[6] Earle C J, Li Z. Isometrically ebmbeded polydisks in infinite-dimensional Teichmüller spaces. Journal of Geometric Analysis, 1999, 9:51-71
[7] Fan J H. On geodesics in asymptotic Teichmüller spaces. Math Z, 2011, 267:767-779
[8] Gardiner F P. Teichmüller Theory and Quadratic Differentials. New York:John Wiley Sons, 1987
[9] Gardiner F P, Lakic N. Quasiconformal Teichmüller Theory. New York:American Mathematical Society, 2000
[10] Gardiner F P, Sullivan D P. Symmetric structures on a closed curve. Amer J Math, 1992114:683-736
[11] Li Z. Non-uniqueness of geodesics in infinite dimensional Teichmüller spaces. Complex Var Theory Appl, 1991, 16:261-272
[12] Li Z. Non-uniqueness of geodesics in infinite dimensional Teichmüller spaces(II). Ann Acad Sci Fenn, Ser A I Math, 1993, 18:335-367
[13] Li Z, Qi Y. Fundamental Inequalities of Reich-Strebel and Triangles in a Teichmüller spaces. Contempory Mathematics, 2012, 57:283-298
[14] Li Z, Qi Y. Angles between two geodesic rays in a Teichmüller spaces (To appear)
[15] Hu Y, Shen Y L. On angles in Teichmüller spaces. Math Z, 2014, 277:181-193
[16] Royden H L. Report on the Teichmüller metric. Proc Amer Math Soc, 1970, 65:497-499
[17] Yao G W. A binary infinitesimal form of Teichmüller metric. Preprint, arXiv:0901.3822 |