Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (4): 1800-1818.doi: 10.1007/s10473-023-0420-0
Previous Articles Next Articles
Xia YE, Yanxia XU, Zejia WANG†
Received:
2022-02-25
Published:
2023-08-08
About author:
Xia YE, E-mail: yexia@jxnu.edu.cn; Yanxia XU,E-mail: xuyanxia-0924@163.com
Supported by:
Xia YE, Yanxia XU, Zejia WANG. THE ZERO LIMIT OF THERMAL DIFFUSIVITY FOR THE 2D DENSITY-DEPENDENT BOUSSINESQ EQUATIONS∗[J].Acta mathematica scientia,Series B, 2023, 43(4): 1800-1818.
[1] Cannon J R, DiBenedetto E. The initial value problem for the Boussinesq equations with data in $L^{p}$//Rautmann R. Approximation Methods for Navier-Stokes Problems. Berlin: Springer, 1980: 129-144 [2] Cao C S, Wu J H. Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation. Arch Ration Mech Anal, 2013, 208(3): 985-1004 [3] Chae D H. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv Math, 2006, 203: 497-515 [4] Constantin P, Doering C R. Infinite Prandtl number convection. J Statistical Physics, 1999, 94: 159-172 [5] Fan J S, Ozawa T. Regularity criteria for the 3D density-dependent Boussinesq equations. Nonlinearity, 2009, 22: 553-568 [6] Gill A E. Atmosphere-Ocean Dynamics.London: Academic Press, 1982 [7] Hou T Y, Li C M. Global well-posedness of the viscous Boussinesq equations. Discrete Contin Dyn Syst, 2005, 12(1): 1-12 [8] Lai M J, Pan R H, Zhao K. Initial boundary value problem for two-dimensional viscous Boussinesq equations. Arch Ration Mech Anal, 2011, 199: 739-760 [9] Li J K, Titi E S. Global well-posedness of the 2D Boussinesq equations with vertical dissipation. Arch Ration Mech Anal, 2016, 220: 983-1001 [10] Li L, Zhou Y P. Blow-up criterion for the density dependent inviscid Boussinesq equations. Bound Value Probl, 2020, 2020: Art 151 [11] Lions P L.Mathematical Topics in Fluid Mechanics, Volume 1: Incompressible Models. New York: Oxford University Press, 1996 [12] Jiang S, Zhang J W, Zhao J N. Boundary-layer effects for the 2-D Boussinesq equations with vanishing diffusivity limit in the half plane. J Differ Equations, 2011, 250(10): 3907-3936 [13] Ju N. Global regularity and long-time behavior of the solutions to the 2D Boussinesq equations without diffusivity in a bounded domain. J Math Fluid Mech, 2017, 19: 105-121 [14] Qiu H, Yao Z A.Well-posedness for density-dependent Boussinesq equations without dissipation terms in Besov spaces. Comput Math Appl, 2017, 73: 1920-1931 [15] Ye X, Zhu M X. The zero limit of thermal diffusivity for the 2D density-dependent Boussinesq equations with vacuum. Z Angew Math Mech, 2020, 100(1): e201900064 [16] Ye Z. Global solvability to the high-dimensional inhomogeneous Boussinesq equations with zero thermal diffusion. Z Angew Math Phys, 2020, 71(5): Art 163 [17] Ye Z. Blow-up criterion of strong solution with vacuum for the 2D nonhomogeneous density-temperature-dependent Boussinesq equations. Z Anal Anwend, 2020, 39(1): 83-101 [18] Zhang Z J. 3D density-dependent Boussinesq equations with velocity field in BMO spaces. Acta Appl Math, 2016, 142: 1-8 [19] Zhong X. Global well-posedness to the Cauchy problem of two-dimensional density-dependent Boussinesq equations with large initial data and vacuum. Discrete Contin Dyn Syst, 2019, 39(11): 6713-6745 [20] Zhong X. Strong solutions to the 2D Cauchy problem of density-dependent viscous Boussinesq equations with vacuum. J Math Phys, 2019, 60(5): 051505 |
|