[1] Alekseenko S N. Existence and asymptotic representation of weak solutions to the flowing problem under the condition of regular slippage on solid walls. Siberian Math J, 1994, 35:209-230 [2] Biskamp D. Nonlinear Magnetohydrodynamics. Cambridge, UK:Cambridge University Press, 1993 [3] Cao C S, Wu J H. Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Advances in Math, 2011, 226:1803-1822 [4] Chen Q L, Miao C X, Zhang Z F. The Beale-Kato-Majda criterion for the 3D magnetohydrodynamics equations. Comm Math Phys, 2007, 275:861-872 [5] Duvaut G, Lions J L. Inéquation en themóelasticite et magnétohydrodynamique. Arch Ration Mech Anal, 1972, 46:241-279 [6] E W. Boundary layer theory and the zero viscosity limit of the Navier-Stokes equations. Acta Math Sin (English Series), 2000, 16:207-218 [7] E W, Engquist B. Blowup of solutions of the unsteady Prandtl's equation. Comm Pure Appl Math, 1997, 50:1287-1293 [8] Grenier E, Masmoudi N. Ekman layers of rotating fluids, the case of well prepared initial data. Comm P D E, 1997, 22:953-975 [9] He C, Xin Z P. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J Funct Anal, 2005, 227:113-152 [10] Kato T. Nonstationary flow of viscous and ideal fluids in R3. J Funct Anal, 1972, 9:296-305 [11] Ladyzhenskaya O A. The Mathematical Theory of Viscous incompressible Flows. 2nd ed. New York:Gordon and Breach, 1969 [12] Lions J L. Méthodes de Résolution des Problémes x Limites Non Liéaires. Paris:Dunod, 1969 [13] Masmoudi N. Ekman layers of rotating fluids:The case of general initial data. Comm Pure and Appl Math, 2000, 53:432-483 [14] Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half space. I. Existence for Euler and Prandtl equations. Comm Math Phys, 1998, 192:433-461 [15] Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half space. Ⅱ. Construction of Navier-Stokes solution. Comm Math Phys, 1998, 192:463-491 [16] Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36:635-664 [17] Temam R, Wang X. Boundary layers associated with incompressible Navier-Stokes equations:The noncharacteristic boundary case. J Diff Eqns, 2002, 179:647-686 [18] Wu J H. Vissous and inviscid magneto-hydrodynamics equations. Journal D'Analyse Mathematique, 1997, 73:251-265 [19] Wu J H. Regularity criteria for the generalized MHD equations. Comm Partial Diff Eqns, 2008, 33:285-306 [20] Xiao Y L, Xin Z P, Wu J H. Vanishing viscosity limit for the 3D magneto-hydrodynamic system with a slip boundary condition. J Funct Anal, 2009, 257:3375-3394 [21] Xin Z P. Viscous boundary layers and their stability. I. J Partial Differential Equations, 1998, 11:97-124 [22] Wu Z L, Wang S. Zero viscosity and diffusion vanishing limit of the incompressible magnetohydrodynamic system with perfectl conducting wall. Non Anal:Real World Appl, 2015, 24:50-60 [23] Han D Z, Mazzucato A L, et al. Boundary layer for a class of nonlinear pipe flow. J Diff Eqns, 2012, 252:6387-6413 [24] Xin Z, Yanagisawa T. Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane. Comm Pure Appl Math, 1999, 52(4):479-541 [25] Feng Y H, Wang S, Li X. Asymptotic behavior of global solutions for bipolar compressible Navier-Stokes maxwell system from plasmas. Acta Mathematica Scientia, 2015, 35B(5):955-969 |