Acta mathematica scientia,Series B ›› 2022, Vol. 42 ›› Issue (2): 813-824.doi: 10.1007/s10473-022-0225-6
• Articles • Previous Articles
Yiming DING, Yun SUN
Received:
2020-12-28
Revised:
2021-05-12
Online:
2022-04-25
Published:
2022-04-22
Supported by:
CLC Number:
Yiming DING, Yun SUN. α-LIMIT SETS AND LYAPUNOV FUNCTION FOR MAPS WITH ONE TOPOLOGICAL ATTRACTOR[J].Acta mathematica scientia,Series B, 2022, 42(2): 813-824.
[1] Auslander J, Bhatia N P, Seibert P. Attractors in dynamical systems. Bol Soc Mat Mex, 1964, 9:55-66 [2] Batko B, Mrozek M. Weak index pairs and the Conley index for discrete multivalued dynamical systems. SIAM J Appl Dyn Syst, 2016, 15(2):1143-1162 [3] Balibrea F, Guirao J, Lampart M. A note on the definition of α-limit set. Appl Math Inf Sci, 2013, 7(5):1929-1932 [4] Bruin H, Keller G, Nowicki T, van Strien S. Wild Cantor attractors exist. Ann Math, 1996, 143(1):97-130 [5] Conley C. Isolated invariant sets and the Morse index//Regional Conference Series in Mathematics Vol 38. Am Math Soc, 1978 [6] Coddington E A, Levinson N. Theory of ordinary differential equations. Tata Mcgraw-Hill Education, 1955 [7] Collet P, Eckmann J P. Concepts and results in chaotic dynamics:a short course//Theoretical and Mathematical Physics. Berlin:Springer-Verlag, 2006 [8] Cui H F, Ding Y M. The α-limit sets of a unimodal map without homtervals. Topology Appl, 2010, 157(1):22-28 [9] Cui H F, Ding Y M. Renormalizaiton and conjugacy of piecewise linear Lorenz maps. Adv Math, 2015, 271:235-272 [10] Ding Y M. Renormalziation and α-limit set of expanding Lorenz map. Discrete Contin Dyn Syst, 2011, 29(3):979-999 [11] Ding Y M, Fan W T. The asymptotic periodicity of Lorenz maps. Acta Math Sci, 1999, 19B(1):114-120 [12] Franks J, Richeson D. Shift equivalence and the Conley index. Trans Amer Math Soc, 2000, 352(7):3305- 3322 [13] Good C, Meddaugh J, Mitchell J. Shadowing, internal chain transitivity and α-limit sets. J Math Anal Appl, 2020, 491(1):124291, 19 pp [14] Guckenheimer J, Holmes P. Nonlinear oscillations, dyanmcial systems, and bifurcations of vector fields//Appl Math Sci Vol 42. New York:Springer-Verlag, 1983 [15] Graczyk J, Kozlovski O. On Hausdorff dimension of unimodal atttractors. Commun Math Phys, 2006, 264(3):565-581 [16] Glendinning P, Sparrow C. Prime and renormalizable kneading invariants and the dynamics of expanding Lorenz maps. Phys D, 1993, 62(1/4):22-50 [17] Hubbard J, Sparrow C. The classification of topologically expansive Lorenz maps. Comm Pure Appl Math, 1990, 43(4):431-443 [18] Kaczynski T, Mrozek M. Conley index for discrete multi-valued dynamical systems. Topology Appl, 1995, 65(1):83-96 [19] Li S M, Shen W X. Hausdorff dimension of Cantor attractors in one-dimensional dynamics. Invent Math, 2008, 171(2):345-387 [20] Liu Z X. Conley index for random dynamical systems. J Diffrential Equations, 2008, 244(7):1603-1628 [21] Milnor J. On the concepts of attractor//The Theory of Chaotic Attractors. New York:Springer, 1985:243-264 [22] Mischaikow K. The conley index theory:a brief introduction. Banach Center Publ, 1999, 47(1):9-19 [23] Mendelosn P. On unstable attractors. Bol Soc Mat Mex, 1960, 5:270-276 [24] Mane R. Hyperbolicity, sinks and measure in one-dimensional dynamics. Comm Math Phys, 1985, 100(4):495-524 [25] Smale S. Differential dynamical systems. Bull Amer Math Soc, 1967, 73:747-817 [26] Wang J T. On the theory of Conley index and shape Conley index in general metric spaces[D]. Tianjin:Tianjin University, 2016 [27] Williams R F. The zeta function of an atrractor//Conference on the Topology of Manifolds. Boston:Prindle Weber and Schmidt, 1968:155-161 |
[1] | Lei SHI, Longxing QI, Sulan ZHAI. PERIODIC AND ALMOST PERIODIC SOLUTIONS FOR A NON-AUTONOMOUS RESPIRATORY DISEASE MODEL WITH A LAG EFFECT [J]. Acta mathematica scientia,Series B, 2022, 42(1): 187-211. |
[2] | Jinling ZHOU, Xinsheng MA, Yu YANG, Tonghua ZHANG. A DIFFUSIVE SVEIR EPIDEMIC MODEL WITH TIME DELAY AND GENERAL INCIDENCE [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1385-1404. |
[3] | Qixing HAN, Daqing JIANG. DYNAMIC FOR A STOCHASTIC MULTI-GROUP AIDS MODEL WITH SATURATED INCIDENCE RATE [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1883-1896. |
[4] | Liya LIU, Daqing JIANG, Tasawar HAYAT, Bashir AHMAD. DYNAMICS OF A HEPATITIS B MODEL WITH SATURATED INCIDENCE [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1731-1750. |
[5] | Qun LIU, Daqing JIANG, Ningzhong SHI, Tasawar HAYAT, Ahmed ALSAEDI. DYNAMICAL BEHAVIOR OF A STOCHASTIC HBV INFECTION MODEL WITH LOGISTIC HEPATOCYTE GROWTH [J]. Acta mathematica scientia,Series B, 2017, 37(4): 927-940. |
[6] | R. AGARWAL, S. HRISTOVA, P. KOPANOV, D. O'REGAN. IMPULSIVE DIFFERENTIAL EQUATIONS WITH GAMMA DISTRIBUTED MOMENTS OF IMPULSES AND P-MOMENT EXPONENTIAL STABILITY [J]. Acta mathematica scientia,Series B, 2017, 37(4): 985-997. |
[7] | Alexander ALEKSANDROV, Elena ALEKSANDROVA, Alexey ZHABKO, Yangzhou CHEN. PARTIAL STABILITY ANALYSIS OF SOME CLASSES OF NONLINEAR SYSTEMS [J]. Acta mathematica scientia,Series B, 2017, 37(2): 329-341. |
[8] | Yoshiaki MUROYA, Eleonora MESSINA, Elvira RUSSO, Antonia VECCHIO. COEXISTENCE FOR MULTIPLE LARGEST REPRODUCTION RATIOS OF A MULTI-STRAIN SIS EPIDEMIC MODEL [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1524-1530. |
[9] | M. YOUSEFNEZHAD, S. A. MOHAMMADI. STABILITY OF A PREDATOR-PREY SYSTEM WITH PREY TAXIS IN A GENERAL CLASS OF FUNCTIONAL RESPONSES [J]. Acta mathematica scientia,Series B, 2016, 36(1): 62-72. |
[10] | M. SYED ALI. STOCHASTIC STABILITY OF UNCERTAIN RECURRENT NEURAL NETWORKS WITH MARKOVIAN JUMPING PARAMETERS [J]. Acta mathematica scientia,Series B, 2015, 35(5): 1122-1136. |
[11] | Yoshiaki MUROYA, Huaixing LI, Toshikazu KUNIYA. ON GLOBAL STABILITY OF A NONRESIDENT COMPUTER VIRUS MODEL [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1427-1445. |
[12] | Yoshiaki MUROYA, Yoichi ENATSU, Toshikazu KUNIYA. GLOBAL STABILITY OF EXTENDED MULTI-GROUP SIR EPIDEMIC MODELS WITH PATCHES THROUGH MIGRATION AND CROSS PATCH INFECTION [J]. Acta mathematica scientia,Series B, 2013, 33(2): 341-361. |
[13] | Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. GLOBAL STABILITY OF SIRS EPIDEMIC MODELS WITH A CLASS OF NONLINEAR INCIDENCE RATES AND DISTRIBUTED DELAYS [J]. Acta mathematica scientia,Series B, 2012, 32(3): 851-865. |
[14] | Zhang Yu; Sun Jitao. EVENTUAL STABILITY OF IMPULSIVE DIFFERENTIAL SYSTEMS [J]. Acta mathematica scientia,Series B, 2007, 27(2): 373-380. |
[15] | Zhen Jin; Ma Zhien; Han Maoan. GLOBAL STABILITY OF AN SIRS EPIDEMIC MODEL WITH DELAYS [J]. Acta mathematica scientia,Series B, 2006, 26(2): 291-306. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 3
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 58
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|