Acta mathematica scientia,Series B ›› 2021, Vol. 41 ›› Issue (6): 2055-2085.doi: 10.1007/s10473-021-0616-0
• Articles • Previous Articles Next Articles
Gilles PISIER
Received:
2021-04-06
Revised:
2021-09-24
Online:
2021-12-25
Published:
2021-12-27
CLC Number:
Gilles PISIER. SEEMINGLY INJECTIVE VON NEUMANN ALGEBRAS[J].Acta mathematica scientia,Series B, 2021, 41(6): 2055-2085.
[1] | Anantharaman C, Popa S. An Introduction to II1-Factors. Cambridge Univ Press, to appear |
[2] | Andersen T B. Linear extensions, projections, and split faces. J Funct Anal, 1974, 17:161-173 |
[3] | Ando T. Closed range theorems for convex sets and linear liftings. Pacific J Math, 1973, 44:393-410 |
[4] | Ando T. A theorem on nonempty intersection of convex sets and its application. J Approximation Theory, 1975, 13:158-166 |
[5] | Arveson W. Notes on extensions of C*-algebras. Duke Math J, 1977, 44:329-355 |
[6] | Bekka B, de la Harpe P, Valette A. Kazhdan's Property (T). Cambridge:Cambridge University Press, 2008 |
[7] | Blecher D P, Le Merdy C. Operator Algebras and Their Modules:An Operator Space Approach. Oxford:Oxford Univ Press, 2004 |
[8] | Blecher D, Paulsen V. Tensor products of operator spaces. J Funct Anal 1991, 99:262-292 |
[9] | Blower G. The Banach space B(l2) is primary. Bull London Math Soc, 1990, 22:176-182 |
[10] | Brown N P, Ozawa N. C*-algebras and Finite-Dimensional Approximations. Graduate Studies in Mathematics, 88. Providence, RI:American Mathematical Society, 2008 |
[11] | de Cannière J, Haagerup U. Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups. Amer J Math, 1985, 107:455-500 |
[12] | Choi M D. A Schwarz inequality for positive linear maps on C*-algebras. Illinois J Math, 1974, 18:565-574 |
[13] | Choi M D, Effros E. The completely positive lifting problem for C*-algebras. Ann of Math, 1976, 104:585-609 |
[14] | Choi M D, Effros E. Separable nuclear C*-algebras and injectivity. Duke Math J, 1976, 43:309-322 |
[15] | Choi M D, Effros E. Lifting problems and the cohomology of C*-algebras. Canadian J Math, 1977, 29:1092-1111 |
[16] | Choi M D, Effros E. Nuclear C*-algebras and injectivity:The general case. Indiana Univ Math J, 1977, 26:443-446 |
[17] | Choi M D. Effros E. Injectivity and operator spaces. J Funct Anal, 1977, 24:156-209 |
[18] | Christensen E, Sinclair A. Completely bounded isomorphisms of injective von Neumann algebras. Proc Edinburgh Math Soc, 1989, 32(2):317-327 |
[19] | Connes A. Classification of injective factors. Cases II1, II∞, IIIλ, λ≠1. Ann Math, 1976, 104(2):73-115 |
[20] | Connes A, Jones V. Property T for von Neumann algebras. Bull London Math Soc, 1985, 17:57-62 |
[21] | Davidson K. C*-algebras by Example. Fields Institute Monogrphs. Providence RI:Amer Math Soc, 1996 |
[22] | Dixmier J. Les Algèbres d'Opérateurs dans l'Espace Hilbertien (Algèbres de von Neumann). Paris:Gauthier-Villars, 1969(in translation:von Neumann Algebras, North-Holland, Amsterdam-New York 1981) |
[23] | Effros E, Lance C. Tensor products of operator algebras. Adv Math, 1977, 25:1-34 |
[24] | Effros E, Ruan Z J. Operator Spaces. Oxford:Oxford Univ Press, 2000 |
[25] | Effros E, Størmer E. Positive projections and Jordan structure in operator algebras. Math Scand, 1979, 45:127-138 |
[26] | Friedman Y, Russo B. Solution of the contractive projection problem. J Funct Anal, 1985, 60:56-79 |
[27] | Haagerup U. The standard form of von Neumann algebras. Math Scand, 1975, 37:271-283 |
[28] | Haagerup U. An example of a nonnuclear C*-algebra, which has the metric approximation property. Invent Math, 1978/79, 50:279-293 |
[29] | Haagerup U. Injectivity and decomposition of completely bounded maps//Lecture Notes in Math 1132. Springer, 1985:170-222 |
[30] | Haagerup U. Group C*-algebras without the completely bounded approximation property. J Lie Theory, 2016, 26:861-887 |
[31] | Haagerup U, Pisier G. Bounded linear operators between C*-algebras. Duke Math J, 1993, 71:889-925 |
[32] | Harmand P, Werner D, Werner W. M-ideals in Banach spaces and Banach algebras. Lecture Notes in Mathematics 1547. Berlin:Springer-Verlag, 1993 |
[33] | Harris L A. Bounded symmetric homogeneous domains in infinite dimensional spaces//Lecture Notes in Mathematics 364. Berlin:Springer-Verlag, 1974:13-40 |
[34] | Harris L A. A generalization of C*-algebras. Proc London Math Soc, 1981, 42:331-361 |
[35] | Ji Z, Natarajan A, Vidick T, Wright J, Yuen H. MIP *=RE. arxiv, January, 2020 |
[36] | Jolissaint P, Valette A. Normes de Sobolev et convoluteurs bornés sur L2(G). Ann Inst Fourier (Grenoble), 1991, 41:797-822 |
[37] | Junge M, Le Merdy C. Factorization through matrix spaces for finite rank operators between C*-algebras. Duke Math J, 1999, 100:299-319 |
[38] | Kavruk A. Nuclearity related properties in operator systems. J Operator Theory, 2014, 71:95-156 |
[39] | Kirchberg E. On nonsemisplit extensions, tensor products and exactness of group C*-algebras. Invent Math, 1993, 112:449-489 |
[40] | Kirchberg E. Commutants of unitaries in UHF algebras and functorial properties of exactness. J Reine Angew Math 1994, 452:39-77 |
[41] | Oikhberg T. Subspaces of maximal operator spaces. Integral Equations Operator Theory, 2004, 48:81-102 |
[42] | Oikhberg T, Rosenthal H P. Extension properties for the space of compact operators. J Funct Anal, 2001, 179:251-308 |
[43] | Ozawa N. Local Theory and Local Reflexivity for Operator Spaces[D]. Texas A&M University, 2001 |
[44] | Ozawa N. On the lifting property for universal C*-algebras of operator spaces. J Operator Theory, 2001, 46(3):579-591 |
[45] | Ozawa N. About the QWEP conjecture. Internat J Math, 2004, 15:501-530 |
[46] | Paulsen V. The maximal operator space of a normed space. Proc Edinburgh Math Soc, 1996, 39:309-323 |
[47] | Paulsen V. Completely Bounded Maps and Operator Algebras. Cambridge:Cambridge Univ Press, 2002 |
[48] | Paulsen V, Todorov I, Tomforde M. Operator system structures on ordered spaces. Proc Lond Math Soc, 2011, 102:25-49 |
[49] | Pisier G. Projections from a von Neumann algebra onto a subalgebra. Bull Soc Math France, 1995, 123:139-153 |
[50] | Pisier G. The operator Hilbert space OH, complex interpolation and tensor norms. Memoirs Amer Math Soc, 1996, 122(585):1-103 |
[51] | Pisier G. Introduction to Operator Space Theory. Cambridge:Cambridge University Press, 2003 |
[52] | Pisier G. Tensor Products of C*-algebras and Operator Spaces, The Connes-Kirchberg Problem. Cambridge University Press, 2020 Available at:https://www.math.tamu.edu/pisier/TPCOS.pdf |
[53] | Robertson A G, Smith R. Liftings and extensions of maps on C*-algebras. J Operator Theory, 1989, 21:117-131 |
[54] | Robertson A G, Wassermann S. Completely bounded isomorphisms of injective operator systems. Bull London Math Soc, 1989, 21:285-290 |
[55] | Sakai S. C*-algebras and W *-algebras. New York, Heidelberg:Springer-Verlag, 1971 |
[56] | Szankowski A. B(H) does not have the approximation property. Acta Math, 1981, 147:89-108 |
[57] | Takesaki M. Theory of Operator Algebras. vol I. Berlin, Heidelberg, New York:Springer-Verlag, 1979 |
[58] | Takesaki M. Theory of Operator Algebras. vol III. Berlin, Heidelberg, New York:Springer-Verlag, 2003 |
[59] | Tomiyama J. On the projection of norm one in W *-algebras. Proc Japan Acad, 1957, 33:608-612 |
[60] | Vesterstrøm J. Positive linear extension operators for spaces of affine functions. Israel J Math, 1973, 16:203-211 |
[61] | Wassermann S. On tensor products of certain group C*-algebras. J Funct Anal, 1976, 23:239-254 |
[62] | Wassermann S. Injective W *-algebras. Proc Cambridge Phil Soc, 1977, 82:39-47 |
[1] | Turdebek N. BEKJAN, Kordan N. OSPANOV. COMPLEX INTERPOLATION OF NONCOMMUTATIVE HARDY SPACES ASSOCIATED WITH SEMIFINITE VON NEUMANN ALGEBRAS [J]. Acta mathematica scientia,Series B, 2020, 40(1): 245-260. |
[2] | Jian HU, Congbian MA, Youliang HOU. Lp-CONTINUITY OF NONCOMMUTATIVE CONDITIONAL EXPECTATIONS [J]. Acta mathematica scientia,Series B, 2015, 35(5): 995-1002. |
[3] | CUI Jian-Lian, Choonkil Park. MAPS PRESERVING STRONG SKEW LIE PRODUCT ON FACTOR VON NEUMANN ALGEBRAS [J]. Acta mathematica scientia,Series B, 2012, 32(2): 531-538. |
|