Acta mathematica scientia,Series B ›› 2021, Vol. 41 ›› Issue (6): 1938-1948.doi: 10.1007/s10473-021-0610-6

• Articles • Previous Articles     Next Articles

LAPLACE TRANSFORMS FOR ANALYTIC FUNCTIONS IN TUBULAR DOMAINS

Guantie DENG, Qian FU, Hui CAO   

  1. Guantie DENG, Qian FU, Hui CAO
  • Received:2021-03-22 Revised:2021-09-16 Online:2021-12-25 Published:2021-12-27
  • Supported by:
    This work was partially supported by NSFC (11971045, 12071035 and 11971063).

Abstract: Assume that $ 0< p<\infty $ and that $B$ is a connected nonempty open set in $\mathbb{R}^n$, and that $A^{p}(B)$ is the vector space of all holomorphic functions $F$ in the tubular domains $\mathbb{R}^n+{\rm i}B$ such that for any compact set $ K \subset B,$ $$ \|y\mapsto \|x\mapsto F(x+{\rm i}y)\|_{L^p(\mathbb{R}^n)}\|_{L(K)}<\infty, $$ so $A^p(B)$ is a Fréchet space with the Heine-Borel property, its topology is induced by a complete invariant metric, is not locally bounded, and hence is not normal. Furthermore, if $1\leq p\leq 2$, then the element $F$ of $A^{p}(B)$ can be written as a Laplace transform of some function $f\in L(\mathbb{R}^n)$.

Key words: Laplace transforms, Fourier transform, tubular domain, regular cone

CLC Number: 

  • 42B30
Trendmd