Acta mathematica scientia,Series B ›› 2021, Vol. 41 ›› Issue (2): 426-436.doi: 10.1007/s10473-021-0207-0

• Articles • Previous Articles     Next Articles

THE ENDPOINT ESTIMATE FOR FOURIER INTEGRAL OPERATORS

Guangqing WANG1, Jie YANG2, Wenyi CHEN1   

  1. 1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China;
    2. College of Mathematics and System Science, Xinjiang University, Xinjiang 830046, China
  • Received:2019-11-29 Revised:2020-04-29 Online:2021-04-25 Published:2021-04-29
  • Contact: Jie YANG E-mail:yangjie1106@xju.edu.cn
  • About author:Guangqing WANG,E-mail:2017102010002@whu.edu.cn;Wenyi CHEN,E-mail:wychencn@whu.edu.cn

Abstract: Let $T_{a,\varphi}$ be a Fourier integral operator defined by the oscillatory integral \begin{eqnarray*} T_{a,\varphi}u(x) &=&\frac{1}{(2\pi)^n}\int_{\mathbb{R}^n} e^{ {\rm i} \varphi(x,\xi)}a(x,\xi) \hat{u}(\xi){\rm d}\xi, \end{eqnarray*} where $a\in S^{m}_{\varrho,\delta}$ and $\varphi\in \Phi^{2}$, satisfying the strong non-degenerate condition. It is shown that if $0<\varrho\leq1$, $0\leq\delta<1$ and $m\leq \frac{\varrho^{2}-n}{2}$, then $T_{a,\varphi}$ is a bounded operator from $L^{\infty}(\mathbb{R}^n)$ to ${\rm BMO}(\mathbb{R}^n).$

Key words: Fourier integral operators, phase function, BMO spaces

CLC Number: 

  • 42B20
Trendmd