Acta mathematica scientia,Series B ›› 2019, Vol. 39 ›› Issue (4): 1149-1162.doi: 10.1007/s10473-019-0417-x
• Articles • Previous Articles Next Articles
Wenhua GAO, Guoen HU
Received:
2018-03-18
Online:
2019-08-25
Published:
2019-09-12
Supported by:
CLC Number:
Wenhua GAO, Guoen HU. QUANTITATIVE WEIGHTED BOUNDS FOR A CLASS OF SINGULAR INTEGRAL OPERATORS[J].Acta mathematica scientia,Series B, 2019, 39(4): 1149-1162.
[1] Buckley S M. Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans Amer Math Soc, 1993, 340:253-272 [2] Cohen J. A sharp estimate for a multilinear singular integral on Rn. Indiana Univ Math J, 1981, 30:693-702 [3] Damián W, Hormozi M, Li K. New bounds for bilinear Calderón-Zygmund operators and applications. arxiv:1512.02400 [4] Grafakos L. Modern Fourier Analysis. GTM 250. 2nd Edition. New York:Springer, 2008 [5] Hofmann S. On certain non-standard Calderón-Zygmund operators. Studia Math, 1994, 109:105-131 [6] Hu G. Weighted vector-valued estimates for a non-standard Calderón-Zygmund operator. Nonlinear Anal, 2017, 165:143-162 [7] Hu G, Li D. A Cotlar type inequality for the multilinear singular integral operators and its applications. J Math Anal Appl, 2004, 290:639-653 [8] Hu G, Yang D. Sharp function estimates and weighted norm inequalities for multilinear singular integral operators. Bull London Math Soc, 2003, 35:759-769 [9] Hytönen T. The sharp weighted bound for general Calderón-Zygmund operators. Ann Math, 2012, 175:1473-1506 [10] Hytönen T, Lacey M, Pérez C. Sharp weighted bounds for the q-variation of singular integrals. Bull London Math Soc, 2013, 45:529-540 [11] Hytönen T, Pérez C. Sharp weighted bounds involving A∞. Anal PDE, 2013, 6:777-818 [12] Hytönen T, Pérez C. The L(log L)ε endpoint estimate for maximal singular integral operators. J Math Anal Appl, 2015, 428:605-626 [13] Lacey M, Li K. On Ap- A∞ type estimates for square functions. Math Z, 2016, 284:1211-1222 [14] Lerner A K. On pointwise estimate involving sparse operator. New York J Math, 2016, 22:341-349 [15] Lerner A K, Obmrosi S, Rivera-Rios I. On pointwise and weighted estimates for commutators of CalderónZygmund operators. Adv Math, 2017, 319:153-181 [16] Lerner A K, Obmrosi S, Rivera-Rios I. Commutators of singular integral operators revisied. arXiv:1709.04724 [17] Li K. Sparse domination theorem for mltilinear singular integral operators with Lr-Hörmander condition. Michigan Math J, 2018, 67:253-265 [18] Li K, Moen K, Sun W. The sharp weighted bound for multilinear maximal functions and Calderón-Zygmund operators. J Four Anal Appl, 2014, 20:751-765 [19] Petermichl S. The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A p characteristic. Amer J Math, 2007, 129:1355-1375 [20] Petermichl S. The sharp weighted bound for the Riesz transforms. Proc Amer Math Soc, 2008, 136:1237- 1249 [21] Rao M, Ren Z. Theory of Orlicz spaces//Monographs and Textbooks in Pure and Applied Mathematics, 146. New York:Marcel Dekker Inc, 1991 [22] Wilson M J. Weighted inequalities for the dyadic square function without dyadic A∞. Duke Math J, 1987, 55:19-50 |
[1] | Yanbo REN. A FOUR-WEIGHT WEAK TYPE MAXIMAL INEQUALITY FOR MARTINGALES [J]. Acta mathematica scientia,Series B, 2019, 39(2): 413-419. |
[2] | Heping LIU, Hongbo ZENG. LOCAL ESTIMATE ABOUT SCHRÖDINGER MAXIMAL OPERATOR ON H-TYPE GROUPS [J]. Acta mathematica scientia,Series B, 2017, 37(2): 527-538. |
[3] | Ushangi GOGINAVA, Károly NAGY. WEAK TYPE INEQUALITY FOR THE MAXIMAL OPERATOR OF WALSH-KACZMARZ-MARCINKIEWICZ MEANS [J]. Acta mathematica scientia,Series B, 2016, 36(2): 359-370. |
[4] | HU Guo-En. WEIGHTED ESTIMATES WITH GENERAL WEIGHTS FOR MULTILINEAR CALDER´|ON-ZYGMUND OPERATORS [J]. Acta mathematica scientia,Series B, 2012, 32(4): 1529-1544. |
[5] | CHEN Wei, LIU Pei-De. SEVERAL WEAK-TYPE WEIGHTED INEQUALITIES IN ORLICZ MARTINGALE CLASSES [J]. Acta mathematica scientia,Series B, 2011, 31(3): 1041-1050. |
[6] | He Fuli; Du Jinyuan. AN OPERATORIAL APPROACH TO SINGULAR INTEGRAL EQUATIONS 0F A MODIFIED TYPE [J]. Acta mathematica scientia,Series B, 2008, 28(4): 763-769. |
[7] | Zuo Hongliang; Liu Peide. WEIGHTED INEQUALITIES FOR THE GEOMETRIC MAXIMAL OPERATOR ON MARTINGALE SPACES [J]. Acta mathematica scientia,Series B, 2008, 28(1): 81-85. |
[8] | Zhou Weijun; Ma Bolin; Xu Jingshi. THE BOUNDEDNESS OF MULTILINEAR COMMUTATORS ON WEIGHTED SPACES#br# AND HERZ-TYPE SPACES [J]. Acta mathematica scientia,Series B, 2007, 27(2): 361-372. |
[9] | Du Zhihua; Du Jinyuan. ON DIRECT METHOD OF SOLUTION FOR A CLASS OF SINGULAR INTEGRAL EQUATIONS [J]. Acta mathematica scientia,Series B, 2007, 27(2): 301-307. |
[10] | HU Guo-En. ON THE COMMUTATORS OF SINGULAR INTEGRAL OPERATORS [J]. Acta mathematica scientia,Series B, 2005, 25(3): 545-554. |
[11] | LIU Lan-Zhe. INTERIOR ESTIMATES IN MORREY SPACES FOR SOLUTIONS OF ELLIPTIC EQUATIONS AND WEIGHTED BOUNDEDNESS FOR COMMUTATORS OF SINGULAR INTEGRAL OPERATORS [J]. Acta mathematica scientia,Series B, 2005, 25(1): 89-94. |
[12] |
XU JINGSHI.
A DISCRETE CHARACTERIZATION OF HERZ-TYPE TRIEBEL-LIZORKIN SPACES AND ITS APPLICATIONS [J]. Acta mathematica scientia,Series B, 2004, 24(3): 412-420. |
[13] | XU Jing-Shi, YANG Da-Chun. APPLICATIONS OF HERZ-TYPE TRIEBEL-LIZORKI SPACES [J]. Acta mathematica scientia,Series B, 2003, 23(3): 328-. |
[14] | GONG Ya-Fang, DU Jin-Yuan. SINGULAR INTEGRAL OPERATORS IN L2 SPACES ASSOCIATED WITH THE GENERALIZED JACOBI WEIGHTS [J]. Acta mathematica scientia,Series B, 2002, 22(4): 484-488. |
[15] | JIANG Yin-Sheng, TANG Lin, YANG Da-Chun. CONTINUITY FOR MAXIMAL COMMUTATORS OF BOCHNER-RIESZ OPERATORS WITH BMO FUNCTIONS [J]. Acta mathematica scientia,Series B, 2001, 21(3): 339-349. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 4
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|