Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (6): 1767-1778.
• Articles • Previous Articles Next Articles
Sahbi BOUSSANDEL
Received:
2017-08-10
Revised:
2017-12-18
Online:
2018-12-25
Published:
2018-12-28
Sahbi BOUSSANDEL. EXISTENCE OF SOLUTIONS FOR GRADIENT SYSTEMS WITH APPLICATION TO DIFFUSION PROBLEMS INVOLVING NONCONVEX ENERGIES[J].Acta mathematica scientia,Series B, 2018, 38(6): 1767-1778.
[1] Boussandel S. Global existence and maximal regularity of solutions of gradient systems. J Differential Equations, 2011, 250:929-948 [2] Brézis H. Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. Vol 5 of North Holland Mathematics Studies. Amsterdam, London:North-Holland, 1973 [3] Brézis H. Analyse Fonctionnelle. Théorie et Applications. Paris:Dunod, 1999 [4] Chill R, Fasangova E. Gradient Systems. Lecture Notes of the 13th International Internet Seminar, Matfyzpress, Prague, 2010 [5] Deimling K. Nonlinear Functional Analysis. Berlin:Springer, 1985 [6] Fučik S, Kufner A. Nonlinear Differential Equaions. Amsterdam:Elsevier, 1980 [7] Ladyženskaja O A, Solonnikov V A, Ural'ceva N N. Linear and Quasilinear Equations of Parabolic Type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol 23. Providence, RI:American Mathematical Society, 1967 [8] Lions J L. Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Paris:Dunod, 2002 [9] Zhang L Q, Zhao J N. Existence and uniqueness of renormalized solutions for a class of degenerate parabolic equations. Acta Math Sci, 2009, 29B(2):251-264 [10] Liu Z. On the solvability of degenerate quasilinear parabolic equations of second order. Acta Mathematica Sinica, English Series, 200016(2):313-324 [11] Showalter R E. Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs, Vol 49. Providence, RI:American Mathematical Society, 1997 [12] Simon J. Compact sets in the space Lp(0, T; B). Ann Mat Pura Appl, 1987, 146:65-96 [13] Wei L, Chen R, Agarwal R P, Wong P Y J. Existence and uniqueness of non-trivial solution of parabolic p-Laplacian-like differential equation with mixed boundaries. Acta Math Sci, 2016, 36B(6):1780-1792 [14] Wloka J. Partial Differential Equations. Cambridge:Cambridge Univ Press, 1987 [15] Zeidler E. Nonlinear Functional Analysis and its Apllications Ⅱ A and Ⅱ/B. Springer, 1990 |
[1] | Salah BOULAARAS, Mohammed Said TOUATI, BRAHIM Smail BOUZENADA, Abderrahmane ZARAI. AN ASYMPTOTIC BEHAVIOR AND A POSTERIORI ERROR ESTIMATES FOR THE GENERALIZED SCHWARTZ METHOD OF ADVECTION-DIFFUSION EQUATION [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1227-1244. |
[2] | Fethi BEN BELGACEM. OPTIMIZATION APPROACH FOR THE MONGE-AMPÈRE EQUATION [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1285-1295. |
[3] | Zhaoxing YANG, Guobao ZHANG. GLOBAL STABILITY OF TRAVELING WAVEFRONTS FOR NONLOCAL REACTION-DIFFUSION EQUATIONS WITH TIME DELAY [J]. Acta mathematica scientia,Series B, 2018, 38(1): 289-302. |
[4] | Zhijuan ZHANG, Xijun YU, Yanzhen CHANG. LOCAL DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC INTERFACE PROBLEMS [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1519-1535. |
[5] | Guangwu WANG, Boling GUO. EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION TO THE INCOMPRESSIBLE NAVIER-STOKES-LANDAU-LIFSHITZ MODELIN 2-DIMENSION [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1361-1372. |
[6] | Zhenhai LIU, Shengda ZENG. DIFFERENTIAL VARIATIONAL INEQUALITIES IN INFINITE BANACH SPACES [J]. Acta mathematica scientia,Series B, 2017, 37(1): 26-32. |
[7] | Weijie SHENG. STABILITY OF TIME-PERIODIC TRAVELING FRONTS IN BISTABLE REACTION-ADVECTION-DIFFUSION EQUATIONS [J]. Acta mathematica scientia,Series B, 2016, 36(3): 802-814. |
[8] | Sahbi BOUSSANDEL. EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR GRADIENT SYSTEMS IN FINITE DIMENSIONAL SPACES [J]. Acta mathematica scientia,Series B, 2016, 36(1): 233-243. |
[9] | Yunguang LU, Christian KLINGENBERG, Ujjwal KOLEY, Xuezhou LU. DECAY RATE FOR DEGENERATE CONVECTION DIFFUSION EQUATIONS IN BOTH ONE AND SEVERAL SPACE DIMENSIONS [J]. Acta mathematica scientia,Series B, 2015, 35(2): 281-302. |
[10] | QIN Yu-Ming, LI Hai-Yan. GLOBAL EXISTENCE AND EXPONENTIAL STABILITY OF SOLUTIONS TO THE QUASILINEAR THERMO-DIFFUSION EQUATIONS WITH SECOND SOUND [J]. Acta mathematica scientia,Series B, 2014, 34(3): 759-778. |
[11] | GUO Chun-Xiao, ZHANG Jing-Jun, GUO Bo-Ling. EXISTENCE UNIQUENESS AND DECAY OF SOLUTION FOR FRACTIONAL BOUSSINESQ APPROXIMATION [J]. Acta mathematica scientia,Series B, 2013, 33(4): 883-900. |
[12] | ZHU Peng, XIE Zi-Qing, ZHOU Shu-Zi. A COUPLED CONTINUOUS-DISCONTINUOUS FEM APPROACH FOR CONVECTION DIFFUSION EQUATIONS [J]. Acta mathematica scientia,Series B, 2011, 31(2): 601-612. |
[13] | Xinfeng Liu, Qing Nie. SPATIALLY-LOCALIZED SCAFFOLD PROTEINS MAY FACILITATE TO TRANSMIT LONG-RANGE SIGNALS [J]. Acta mathematica scientia,Series B, 2009, 29(6): 1657-1669. |
[14] | DIAO Dun-Ning, CENG Xiao-Meng. THE FIRST BOUNDARY VALUE PROBLEM FOR A CLASS OF QUASILINEAR DEGENERATE ELLIPTIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2005, 25(4): 577-586. |
[15] | Jiu Quansen. GLOBAL STRONG SOLUTIONS FOR A CLASS OF BBM-BO TYPE EQUATION [J]. Acta mathematica scientia,Series B, 1998, 18(3): 340-347. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|