[1] Arnold D N, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal, 2000, 39(5): 1749--1779
[2] Ayuso B, Marini L D. Disconitnuous Galerkin methods for advection-diffusion-reaction problems. SIAM J Numer Anal, 2009, 47(2): 1391--1420
[3] Castillo P, et al. An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J Numer Anal, 2000, 38(5): 1676--1706
[4] Celiker F, Cockburn B. Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension. Math Comp, 2007, 76(257): 67--96
[5] Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal, 1998, 35(6): 2440--2463
[6] Dawson C, Proft J. Coupling of continuous and discontinuous Galerkin methods for transport problems. Comput Methods Appl Mech
Engrg, 2002, 191(29): 3213--3231
[7] Devloo Philippe R B, et al. A combined continuous-discontinuous finite element method for convection-diffusion problems. Latin American Journal of Solids and Structures, 2007, 4(3): 229--246
[8] Perugia I, Sch\"{o}tzau D. On the coupling of local discontinuous Galerkin and conforming finite element methods. J of Sci Comp, 2001, 16(4): 411--433
[9] Xie Z Q, Zhang Z. Superconvergence of DG method for one-dimensional singularly perturbed problems. J Comp Math, 2007, 25(2): 185--200
[10] Xie Z Q, Zhang Z Z, Zhang Z. A numerical study of uniform superconvergence for solving singularly perturbed problems. J Comp Math, 2009, 27(2/3): 280--298
[11] Zhang Z. Finite element superconvergent approximation for one-dimensional singularly perturbed problems. Numerical methods for
partial differential equations, 2002, 18(3): 374--395
[12] Zhang Z Z, Xie Z Q, Zhang Z. Superconvergence of discontinuous Galerkin methods for convection diffusion problems. J Sci Comp, 2009, 41(1): 70--93
[13] Ern A, Guermond J L. Theory and practice of finite elements. Berlin: Springer, 2004: 38--58
[14] Roos H G, Stynes M, Tobiska L. Robust numerical methods for singularly perturbed differential equations. Berlin: Springer, 2008: 338--371
[15] Baumann C E. An hp-adaptive discontinuous finite element method for computational fluid dynamics [PhD thesis]. USA: University of Texas at Austin, 1997 |