Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (1): 289-302.
• Articles • Previous Articles Next Articles
Zhaoxing YANG, Guobao ZHANG
Received:
2016-09-06
Revised:
2017-08-18
Online:
2018-02-25
Published:
2018-02-25
Contact:
Guobao ZHANG
E-mail:zhanggb2011@nwnu.edu.cn
Supported by:
Zhaoxing YANG, Guobao ZHANG. GLOBAL STABILITY OF TRAVELING WAVEFRONTS FOR NONLOCAL REACTION-DIFFUSION EQUATIONS WITH TIME DELAY[J].Acta mathematica scientia,Series B, 2018, 38(1): 289-302.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Chern I L, Mei M, Yang X F, Zhang Q F. Stability of non-monotone critical traveling waves for reactiondiffusion equations with time-delay. J Differ Equ, 2015, 259:1503-1541 [2] Guo S J, Zimmer J. Stability of traveling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects. Nonlinearity, 2015, 28:463-492 [3] Gurney W S C, Blythe S P, Nisbet R M. Nicholson's blowflies revisited. Nature, 1980, 287:17-21 [4] Jiang M N, Xiang J L. Asymptotic stability of traveling waves for a dissipative nonlinear evolution system. Acta Math Sci, 2015, 35B:1325-1338 [5] Lin G J. Traveling waves in the Nicholson's blowflies equation with spatio-temporal delay. Appl Math Comput, 2009, 209:314-326 [6] Lin C K, Mei M. On travelling wavefronts of the Nicholson's blowflies equations with diffusion. Proc Royal Soc Edinburgh Sect A, 2010, 140:135-152 [7] Lin C K, Lin C T, Lin Y P, Mei M. Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation. SIAM J Math Anal, 2014, 46:1053-1084 [8] Li W T, Ruan S, Wang Z C. On the diffusive Nicholson's blowflies equation with nonlocal delays. J Nonlinear Sci, 2007, 17:505-525 [9] Lv G, Wang M X. Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations. Nonlinearity, 2010, 23:845-873 [10] Mei M, So J W H, Li M Y, Shen S S P. Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion. Proc Roy Soc Edinburgh Sect A, 2004, 134:579-594 [11] Mei M, Lin C K, Lin C T, So J W H. Traveling wavefronts for time-delayed reaction-diffusion equations:(I) local nonlinearity. J Differ Equ, 2009, 247:495-510 [12] Mei M, Ou C, Zhao X Q. Global stability of monotone traveling waves for Nonlocal time-delayed reactiondiffusion equations. SIAM J Math Anal, 2010, 42:2762-2790 [13] Nicholson A J. Competition for food amongst Lucilia Cuprina larvae, in Proceedings of the 8th International Congress of Entomology. Stockholm, 1948:277-281 [14] Nicholson A J. An outline of dynamics of animal populations. Aust J Zool, 1954, 2:9-65 [15] So J W H, Yang Y. Dirichlet problem for Nicholson's blowflies equation. J Differ Equ, 1998, 150:317-348 [16] So J W H, Zou X. Traveling waves for the diffusive Nicholson's blowflies equation. Appl Math Comput, 2001, 122:385-392 [17] Tian G, Zhang G B, Yang Z X. Stability of non-monotone critical traveling waves for spatially discrete reaction-diffusion equations with time delay. Turk J Math, 2017, 41:655-680 [18] Wang X H, Lv G. Stability of traveling wave fronts for nonlocal reaction diffusion equations with delay. Acta Math Sin (Chin Ser), 2015, 58:13-28 [19] Wang Z C, Li W T, Ruan S. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays. J Differ Equ, 2006, 222:185-232 [20] Wu S, Li W T, Liu S. Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay. J Math Anal Appl, 2009, 360:439-458 [21] Yang Y R, Liu L. Stability of traveling waves in a population dynamics model with spatio-temporal delay. Nonlinear Anal, 2016, 132:183-195 [22] Yang Z X, Zhang G B, Tian G, Feng Z S. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete Contin Dyn Syst Ser S, 2017, 10:581-603 [23] Zhang G B, Li W T. Nonlinear stability of traveling wavefronts in an age-structured population model with nonlocal dispersal and delay. Z Angew Math Phys, 2013, 64:1643-1659 [24] Zhang G B, Ma R. Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution type crossing-monostable nonlinearity. Z Angew Math Phys, 2014, 65:819-844 |
[1] | Gui-Qiang G. CHEN, Matthew RIGBY. STABILITY OF STEADY MULTI-WAVE CONFIGURATIONS FOR THE FULL EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW [J]. Acta mathematica scientia,Series B, 2018, 38(5): 1485-1514. |
[2] | Yanyan LI, Bo WANG. STRONG COMPARISON PRINCIPLES FOR SOME NONLINEAR DEGENERATE ELLIPTIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(5): 1583-1590. |
[3] | Yonghui ZHOU, Yunrui YANG, Kepan LIU. STABILITY OF TRAVELING WAVES IN A POPULATION DYNAMIC MODEL WITH DELAY AND QUIESCENT STAGE [J]. Acta mathematica scientia,Series B, 2018, 38(3): 1001-1024. |
[4] | Shaojun TANG, Lan ZHANG. NONLINEAR STABILITY OF VISCOUS SHOCK WAVES FOR ONE-DIMENSIONAL NONISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH A CLASS OF LARGE INITIAL PERTURBATION [J]. Acta mathematica scientia,Series B, 2018, 38(3): 973-1000. |
[5] | Janusz BRZDȨK, Krzysztof CIEPLINSKI. ON A FIXED POINT THEOREM IN 2-BANACH SPACES AND SOME OF ITS APPLICATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(2): 377-390. |
[6] | A. M. NAGY, N. H. SWEILAM. NUMERICAL SIMULATIONS FOR A VARIABLE ORDER FRACTIONAL CABLE EQUATION [J]. Acta mathematica scientia,Series B, 2018, 38(2): 580-590. |
[7] | P. BASKAR, S. PADMANABHAN, M. SYED ALI. FINITE-TIME H∞ CONTROL FOR A CLASS OF MARKOVIAN JUMPING NEURAL NETWORKS WITH DISTRIBUTED TIME VARYING DELAYS-LMI APPROACH [J]. Acta mathematica scientia,Series B, 2018, 38(2): 561-579. |
[8] | Rakesh KUMAR, Anuj Kumar SHARMA, Kulbhushan AGNIHOTRI. STABILITY AND BIFURCATION ANALYSIS OF A DELAYED INNOVATION DIFFUSION MODEL [J]. Acta mathematica scientia,Series B, 2018, 38(2): 709-732. |
[9] | Suiming SHANG, Yu TIAN, Yajing ZHANG. FLIP AND N-S BIFURCATION BEHAVIOR OF A PREDATOR-PREY MODEL WITH PIECEWISE CONSTANT ARGUMENTS AND TIME DELAY [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1705-1726. |
[10] | Iz-iddine EL-FASSI, Janusz BRZDȨK, Abdellatif CHAHBI, Samir KABBAJ. ON HYPERSTABILITY OF THE BIADDITIVE FUNCTIONAL EQUATION [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1727-1739. |
[11] | R. AGARWAL, S. HRISTOVA, P. KOPANOV, D. O'REGAN. IMPULSIVE DIFFERENTIAL EQUATIONS WITH GAMMA DISTRIBUTED MOMENTS OF IMPULSES AND P-MOMENT EXPONENTIAL STABILITY [J]. Acta mathematica scientia,Series B, 2017, 37(4): 985-997. |
[12] | Xiaoxiao ZHENG, Yadong SHANG, Xiaoming PENG. ORBITAL STABILITY OF PERIODIC TRAVELING WAVE SOLUTIONS TO THE GENERALIZED ZAKHAROV EQUATIONS [J]. Acta mathematica scientia,Series B, 2017, 37(4): 998-1018. |
[13] | Alexander ALEKSANDROV, Elena ALEKSANDROVA, Alexey ZHABKO, Yangzhou CHEN. PARTIAL STABILITY ANALYSIS OF SOME CLASSES OF NONLINEAR SYSTEMS [J]. Acta mathematica scientia,Series B, 2017, 37(2): 329-341. |
[14] | Mohammed Salah M'HAMDI, Chaouki AOUITI, Abderrahmane TOUATI, Adel M. ALIMI, Vaclav SNASEL. WEIGHTED PSEUDO ALMOST-PERIODIC SOLUTIONS OF SHUNTING INHIBITORY CELLULAR NEURAL NETWORKS WITH MIXED DELAYS [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1662-1682. |
[15] | Soumaya SÂANOUNI, Nihed TRABELSI. A BIFURCATION PROBLEM ASSOCIATED TO AN ASYMPTOTICALLY LINEAR FUNCTION [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1731-1746. |
|