Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (1): 303-314.
• Articles • Previous Articles Next Articles
Santhosh GEORGE, C. D. SREEDEEP
Received:
2016-09-06
Revised:
2017-10-18
Online:
2018-02-25
Published:
2018-02-25
Santhosh GEORGE, C. D. SREEDEEP. LAVRENTIEV'S REGULARIZATION METHOD FOR NONLINEAR ILL-POSED EQUATIONS IN BANACH SPACES[J].Acta mathematica scientia,Series B, 2018, 38(1): 303-314.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Alber Y I. On solution by the method of regularization for operator equation of the first kind involving accretive mappings in Banach spaces. Differ Equ SSSR, 1975, XI:2242-2248 [2] Alber Y I, Ryazantseva I P. Nonlinear Ill-Posed Problems of Monotone Type. Dordrecht:Springer, 2006 [3] Argyros I K, George S. Iterative regularization methods for nonlinear ill-posed operator equations with m-accretive mappings in Banach spaces. Acta Math Sci, 2015, 35B(6):1318-1324 [4] Buong N. Projection-regularization method and ill-posedness for equations involving accretive operators. Vietnamese Math J, 1992, 20:33-39 [5] Buong N. Convergence rates in regularization under arbitrarily perturbative operators. Annali di Mathematica, 2003, 43(3):323-327 [6] Buong N. Convergence rates in regularization for nonlinear ill-posed equations under m-accretive perturbations. Zh Vychisl Matematiki i Matem Fiziki, 2004, 44:397-402 [7] Buong N. Generalized discrepancy principle and ill-posed equations involving accretive operators. Nonlinear Funct Anal Appl, 2004, 9:73-78 [8] Buong N. On nonlinear ill-posed accretive equations. Southest Asian Bull Math, 2004, 28:1-6 [9] Buong N. Convergence rates in regularization for nonlinear ill-posed equations involving m-accretive mappings in Banach spaces. Appl Math Sci, 2012, 63(6):3109-3117 [10] Buong N, Hung V Q. Newton-Kantorovich iterative regularization for nonlinear ill-posed equations involving accretive operators. Ukrainian Math Zh, 2005, 57:23-30 [11] Hofmann B, Kaltenbacher B, Resmerita E. Lavrentiev's regularization method in Hilbert spaces. Revisited, arXiv:150601803v2[mathNA], 19, 2016 [12] Krasnoselskii M A, Zabreiko P P, Pustylnik E I, Sobolevskii P E. Integral Operators in Spaces of Summable Functions. Leyden:Noordhoff International Publ, 1976 [13] Liu Z H. Browder-Tikhonov regularization of non-coercive ill-posed hemivariational inequalities. Inverse Probl, 2005, 21:13-20 [14] Pereverzyev S, Schock E. On the adaptive selection of the parameter in regularization of ill-posed problems. SIAM J Numer Anal, 2005, 43(5):2060-2076 [15] Semenova E V. Lavrentiev regularization and balancing principle for solving ill-posed problems with monotone operators. Comput Methods Appl Math, 2010, 10(4):444-454 [16] Tautenhahn U. On the method of Lavrentiev regularization for nonlinear ill-posed problems. Inverse Probl, 2002, 18:191-207 [17] Vasin V, George S. An analysis of lavrentiev regularization method and newton type process for nonlinear ill-posed problem. Appl Math Comput, 2014, 230:406-413 [18] Wang J A, Li J, Liu Z H. Regularization methods for nonlinear ill-posed problems with accretive operators. Acta Math Sci, 2008, 28B(1):141-150 |
[1] | Jasbir Singh MANHAS, Ruhan ZHAO. PRODUCTS OF WEIGHTED COMPOSITION AND DIFFERENTIATION OPERATORS INTO WEIGHTED ZYGMUND AND BLOCH SPACES [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1105-1120. |
[2] | Lixin CHENG, Sijie LUO. YET ON LINEAR STRUCTURES OF NORM-ATTAINING FUNCTIONALS ON ASPLUND SPACES [J]. Acta mathematica scientia,Series B, 2018, 38(1): 151-156. |
[3] | Zi WANG, Yuwen WANG. A NEW PERTURBATION THEOREM FOR MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1619-1631. |
[4] | Dehua QIU, Pingyan CHEN, Volodin ANDREI. COMPLETE MOMENT CONVERGENCE FOR LP-MIXINGALES [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1319-1330. |
[5] | Xiaolong QIN, Sun Young CHO. CONVERGENCE ANALYSIS OF A MONOTONE PROJECTION ALGORITHM IN REFLEXIVE BANACH SPACES [J]. Acta mathematica scientia,Series B, 2017, 37(2): 488-502. |
[6] | Kazuhide NAKAJO. IMPROVED GRAOIENT METHOD FOR MONOTONE AND LIPSCHITZ CONTINUOUS MAPPINGS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2017, 37(2): 342-354. |
[7] | Shisheng ZHANG, Lin WANG, Lijuan QIN, Zhaoli MA. STRONGLY CONVERGENT ITERATIVE METHODS FOR SPLIT EQUALITY VARIATIONAL INCLUSION PROBLEMS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1641-1650. |
[8] | Sheng ZHU, Jianhua HUANG. STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEM AND BREGMAN TOTALLY QUASI-ASYMPTOTICALLY NONEXPANSIVE MAPPING IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1433-1444. |
[9] | Lingxin BAO. ON WEAK FILTER CONVERGENCE AND THE RADON-RIESZ TYPE THEOREM [J]. Acta mathematica scientia,Series B, 2016, 36(1): 215-219. |
[10] | Jasbir Singh MANHAS, Ruhan ZHAO. ESSENTIAL NORMS OF PRODUCTS OF WEIGHTED COMPOSITION OPERATORS AND DIFFERENTIATION OPERATORS BETWEEN BANACH SPACES OF ANALYTIC FUNCTIONS [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1401-1410. |
[11] | Choonkil PARK. QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1501-1510. |
[12] | Eric U. OFOEDU, Charles E. ONYI. APPROXIMATION OF COMMON FIXED POINT OF FAMILIES OF NONLINEAR MAPPINGS WITH APPLICATIONS [J]. Acta mathematica scientia,Series B, 2015, 35(5): 1225-1240. |
[13] | Yekini SHEHU. CONVERGENCE ANALYSIS FOR SYSTEM OF EQUILIBRIUM PROBLEMS AND LEFT BREGMAN STRONGLY RELATIVELY NONEXPANSIVE MAPPING [J]. Acta mathematica scientia,Series B, 2014, 34(4): 1081-1097. |
[14] | Yekini SHEHU. APPROXIMATION OF FIXED POINTS AND VARIATIONAL SOLUTIONS FOR PSEUDO-CONTRACTIVE MAPPINGS IN#br# BANACH SPACES [J]. Acta mathematica scientia,Series B, 2014, 34(2): 409-423. |
[15] | B. Yousefi, Sh. Khoshdel. REFLEXIVITY OF POWERS OF THE MULTIPLICATION OPERATOR ON SPECIAL FUNCTION SPACES [J]. Acta mathematica scientia,Series B, 2012, 32(6): 2279-2284. |
|