[1] Li T, Yorke J. Periodic three implies chaos. Amer Math Monthly, 1975, 82: 985–992
[2] Xiong J. A chaotic map with topdogical entropy. Acta Math Scientia, 1986, 4: 439–443
[3] Huang W, Ye X. Devaney’s chaos or 2-scattering implies Li-Yorke’s chaos. Topol Appl, 2002, 117(3): 259–272
[4] Blanchard F, Durand F,Maass A. Constant-length substitutions and countable scrambled sets. Nonlinearity, 2004, 17: 817–833
[5] Mycielski J. Independent sets in topological algebras. Fund Math, 1964, 55: 139–147
[6] Blanchard F, Huang W, Snoha L. Topological size of scrambled sets. Colloq Math, 2008, 110: 293–361
[7] Schweizer B, Sm´?tal J. Measures of chaos and a spectral decomposition of dynamical systems on the interval. Tran Amer Math Soc, 1994, 344: 737–754
[8] Li J. Chaos and entropy for interval maps. J Dyna Diff Equa, 2011, 23(2): 333–352
[9] Fu H, Xiong J, Tan F. On distributionally chaotic and null systems. J Math Anal Appl, 2011, 375: 166–173
[10] Xiong J, L¨u J, Tan F. Furstenberg family and chaos. Sci China: Ser A, 2007, 50(4): 1325–1333
[11] Akin E. Recurrence in Topological Dynamics: Furstenberg and Ellis Actions. New York: Plenum Press, 1997
[12] Shao S. Proximity and distality via Furstenberg families. Topol Appl, 2006, 153: 2055–2072
[13] Zhou Z. Weakly almost periodic point and measure centre. Sci China: Ser A, 1993, 36: 142–153
[14] Kerr D, Li H. Independence in topological and C-dynamics. Math Ann, 2007, 338: 869–926
[15] Ye X, Huang W, Shao S. An Introduction to Topological Dynamical Systems (Chinese). Beijing: Science Press, 2008 |