[1] Xu T, Zhang C Y, Li J, Meng X H, Zhu H W, Tian B. Symbolic computation on generalized Cole-Hopf transformation for a forced Burgers model with variable coefficients from fluid dynamics. Wave Motion 2007, 44: 262–270
[2] Bec J, Khanin K. Forced Burgers equation in an unbounded domain. J Stat Phys, 2003, 113: 741–759
[3] Barndorff-Nielsen O E, Leonenko N N. Burgers’ turbulence problem with linear or quadratic external potential. J Appl Probability, 2005, 42: 550–565
[4] Broadbridge P. The forced Burgers equation, plant roots and Schr¨odinger’s eigenfunctions. J Engrg Math, 1999, 36: 25–39
[5] Ding X, Jiu Q, He C. On a nonhomogeneous Burgers’ equation. Sci China Ser A, 2001, 44: 984–993
[6] Rao C S, Yadav M K. Solutions of a nonhomogeneous Burgers equation. Stud Appl Math, 2010, 124(4): 411–422
[7] Rao C S, Yadav M K. Large time asymptotics for solutions of a nonhomogeneous Burgers equation. Appl Math Mech (English Edition), 2010, 31(9): 1189–1196
[8] Rao C S, Yadav M K. On the solution of a nonhomogeneous Burgers equation. Int J Nonlinear Sci, 2010, 10(2): 141–145
[9] Yadav M K. Solutions of a system of forced Burgers equation. Appl Math Comp, 2013, 225: 151–157
[10] Kloosterziel R C. On the large-time asymptotics of the diffusion equation on infinite domains. J Engrg Math, 1990, 24: 213–236
[11] Bluman G W, Cole J D. The general similarity solution of the Heat equation. J Math Mech, 1969, 18: 1025–1042
[12] Doyle J, Englefield M J. Similarity solutions of a generalized Burgers equation. IMA J Appl Math, 1990, 44: 145–153
[13] Neklyudov M Y. Equivalence of the Navier-Stokes equation and the infinite dimensional Burgers equation. J Math Sci, 2008, 150: 2531–2539
[14] Young D L, Fan C M, Hu S P, Atluri S N. The Eulerian-Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers equations. Eng Anal Boundary Elements, 2008, 32: 395–412
[15] Joseph K T, Sachdev P L. Initial boundary value problems for scalar and vector Burgers equations. Stud Appl Math, 2001, 106: 481–505
[16] Joseph K T. Asymptotic behaviour of solutions of matrix Burgers equation. Appl Math E-Notes, 2007, 7: 186–190
[17] Joseph K T, Vasudeva Murthy A S. Hopf-Cole transformation to some systems of partial differential equations.
Nonlinear Differ Equ Appl, 2001, 8: 173–193
[18] Higgins J R. Completeness and Basic Properties of Sets of Special Functions. Cambridge: Cambridge University Press, 1977
[19] Polyanin A D, Zaitsev V F. Handbook of Exact Solutions of Ordinary Differential Equations. 2nd ed. New York: Chapman & Hall/CRC, 2003
[20] Knuth D E. Big omicron and big omega and big theta. SIGACT News, 1976, April-June: 18–24 |