[1] Benci V, Rabinowitz P H. Critical points theorems for indefinite functions. Inven Math, 1979, 52: 241–273
[2] Capozzi A. On subquadratic Hamiltonian systems. Nonlinear Anal, 1984, 8(6): 553–562
[3] Ekeland I. Convexity Method in Hamiltonian Mechanics. Berlin: Springer-Verlag, 1990
[4] Felmer P. Periodic solutions of superquadratic Hamiltonian systems. J Diff Eq, 1993, 102: 188–207
[5] Fan X, Li F. Periodic solution of subquadratic Hamiltonian systems. J Lanzhou Univ Nat Sci (in Chinese),
1996, 32(1): 6–10
[6] Guo F, Liu C. Multiplicity of Lagrangian orbits on symmetric star-shaped hypersurfaces. Nonlinear Anal,
2008, 69(4): 1425–1436
[7] Hofer H, Zehnder E. Symplectic Invariants and Hamiltonian Dynamics. Basel Boston, Berlin: Birkh¨auser
Verlag, 1994
[8] Liu C. Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions. Pacific J Math,
2007, 232(1): 233–255
[9] Liu C. Maslov-type index theory for symplectic paths with Lagrangian boundary conditions. Adv Non
Stu, 2007, 7: 131–161
[10] McDuff D, Salamon D. Introduction to Symplectic Topology. Oxford: Clarendon Press, 1998
[11] Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations.
CBMS Regional Conf Ser in Math, 65, Ams, RI, 1986
[12] Rabinowitz P H. Periodic solution of Hamiltonian systems. Comm Pure Appl Math, 1978, 31: 157–184
|