[1] Beale J T, Kato T, Majda A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm Math Phys, 1984, 94: 61–66
[2] Chae D. Nonexistence of self-similar singularities for the 3D incompressible Euler equations. Comm Math Phys, 2007, 273(1): 203–215
[3] He Xinju. Self-similar singularities of the 3D Euler equations. Appl Math Lett, 2000, 13: 41–46
[4] Leray J. Essai sur le mouvement dun fiuide visqueux emplissant lespace. Acta Math, 1934, 63: 193–248
[5] Malek J, Necas J, Pocorny M, Schonbek M. On the possible singular solutions to the Navier-Stokes equa-tions. Mathematische Nachrichten, 1999, 199: 97–114
[6] Marsden J, Ebin D, Fischer A E. Diffeomorphism groups, hydrodynamics and relativity//Vanstone J R, ed. Proceedings of the thirteenth biennial seminar of the Canadian Math Congress. Montreal, 1972
[7] Miller J, O′Leary M, Schonbek M. Nonexistence of Singular Pseudo-self-similar Solutions of the Navier-Stokes System. Mathematiche Annalen, 2001, 319: 809–815
[8] Neˇcas J, Ruˇziˇcka M, ˇ Sverák V. On Lerays self-similar solutions of the Navier-Stokes equations. Acta Math, 1996, 176: 283–294
[9] Tsai T-P. On Lerays self-similar solutions of the Navier–Stokes equations satisfying local energy estimates. Arch Rat Mech Anal, 1998, 443(1): 29–51
[10] Temam R. Local existence of C∞ solutions of the Euler equations of incompressible perfect fluids//Lecture Notes in Mathematics, Vol 565. Berlin, Heidelberg, New York: Springer, 1976: 184–194 |