Acta mathematica scientia,Series B ›› 2014, Vol. 34 ›› Issue (4): 1072-1080.doi: 10.1016/S0252-9602(14)60070-9
• Articles • Previous Articles Next Articles
CHEN Qing, TAN Zhong, WU Guo-Chun*
Received:
2013-05-24
Online:
2014-07-20
Published:
2014-07-20
Contact:
WU Guo-Chun,guochunwu@126.com
E-mail:chenqing@xmut.edu.cn;ztan85@163.com;guochunwu@126.com
Supported by:
The research was supported Supported by National Natural Science Foundation of China (10976026, 11271305, 11301439, 11226174).
CLC Number:
CHEN Qing, TAN Zhong, WU Guo-Chun. LPS´S CRITERION FOR INCOMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS[J].Acta mathematica scientia,Series B, 2014, 34(4): 1072-1080.
[1] Beale J T, Kato T, Majda A. Remarks on the breakdown of smooth solutions for the 3-D Euler equation. Commun Math Phys, 1984, 94: 61–66 [2] DE Gennes P G. The Physics of Liquid Crystals. Oxford, 1974 [3] Ericksen J L. Hydrostatic theory of liquid crystal. Arch Ration Mech Anal, 1962, 9: 371–378 [4] Escauriaza L, Seregin G, Sver´ak V. L3,1 solutions of the Navier-Stokes equations and backward uniqueness. Russ Math Surv, 2003, 58: 211–250 [5] Hong M C. Global existence of solutions of the simplified Ericksen-Leslie system in R2. Calc Var Partial [6] Hong M C, Xin Z P. Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in R2. Adv Math, 2012, 231: 1364–1400 [7] Huang T, Wang C Y. Blow up criterion for nematic liquid crystal flows. Comm Partial Differ Equ, 2012, 37: 875–884 [8] Jiang F, Jiang S, Wang D H. Global weak solutions to the equations of compressible flow of nematic liquid crystals in Two Dimensions. Preprinted [9] Jiang F, Jiang S, Wang D H. On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain. J Funct Anal, 2013, 265(12): 3369–3397 [10] Jiang F, Tan Z. Global weak solution to the flow of liquid crystals system. Math Methods Appl Sci, 2009, 32(17): 2243–2266 [11] Ladyzhenskaya O. Uniqueness and smoothness of generalized solutions of Navier-Stokes equations. Zap Nauv cn Sem Leningrad Otdel Mat Inst Steklov (LOMI), 1967, 5: 169–185 [12] Leray J. Sur le mouvement d´un liquide visqueux emplissant l´espace. Acta Math, 1934, 63: 193–248 [13] Leslie F M. Some constitutive equations for liquid crystals. Arch Ration Mech Anal, 1962, 28: 265–283 [14] Li J K. Global strong and weak solutions to nematic liquid crystal flow in two dimensions. Nonlinear Anal: TMA, 2014, 99: 80–94 [15] Li J K, Xin Z P. Global Weak Solutions to Non-isothermal Nematic Liquid Crystals in 2D. [16] Lin F H. Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun Pure Appl Math, 1989, 42: 789–814 [17] Lin F H, Liu C. Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun Pure Appl Math, 1995, 48: 501–537 [18] Lin F H, Liu C. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete Contin Dyn Syst, 1996, 2: 1–22 [19] Lin F H, Lin J, Wang C Y. Liquid crystal flows in two dimensions. Arch Rational Mech Anal, 2010, 197: 297–336 [20] Lin F H, Lin J, Wang C Y. On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chinese Ann Math, 2010, 31B: 921–928 [21] Liu Q, Zhao J H. Logarithmical blow-up criteria for the nematic liquid crystal flows. Nonlinear Anal: RWA, 2014, 16: 178–190 [22] Majda A. Compressible Fluid Flow and System of Conservation Laws in Several Space Variables. Applied Mathematical Sciences, 53. New York: Springer-Verlag, 1984 [23] Prodi G. Un teorema di unicit per le equationi di Navier-Stokes. Ann Mat Pura Appl, 1959, 48(4): 173–182 [24] Serrin J. The initial value problem for the Navier-Stokes equations. Nonlinear Problems (Proc Sympos, Madison, Wis). Madison: University of Wisconsis Press, 1963: 69–98 [25] Xu X, Zhang Z F. Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows. J Differ Equ, 2012, 252: 1169–1181 [26] Zhou Y, Fan J S. A regularity criterion for the nematic liquid crystal flows. J Inequal Appl 2010, Art. ID 589697, 9 pp. |
[1] | Nermina MUJAKOVIC, Nelida CRNJARIC-ZIC. GLOBAL SOLUTION TO 1D MODEL OF A COMPRESSIBLE VISCOUS MICROPOLAR HEAT-CONDUCTING FLUID WITH A FREE BOUNDARY [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1541-1576. |
[2] | Bei LI, Hongjin ZHU, Caidi ZHAO. TIME DECAY RATE OF SOLUTIONS TO THE HYPERBOLIC MHD EQUATIONS IN R3 [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1369-1382. |
[3] | Wentao CAO, Feimin HUANG, Tianhong LI, Huimin YU. GLOBAL ENTROPY SOLUTIONS TO AN INHOMOGENEOUS ISENTROPIC COMPRESSIBLE EULER SYSTEM [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1215-1224. |
[4] | Lu YAN, Zhenhua SHI, Hao WANG, Jing KANG. INVARIANT SUBSPACES AND GENERALIZED FUNCTIONAL SEPARABLE SOLUTIONS TO THE TWO-COMPONENT b-FAMILY SYSTEM [J]. Acta mathematica scientia,Series B, 2016, 36(3): 753-764. |
[5] | Hong CAI, Zhong TAN. WEAK TIME-PERIODIC SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS [J]. Acta mathematica scientia,Series B, 2016, 36(2): 499-513. |
[6] | Ruxu LIAN, Jian LIU. FREE BOUNDARY VALUE PROBLEM FOR THE CYLINDRICALLY SYMMETRIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY [J]. Acta mathematica scientia,Series B, 2016, 36(1): 111-123. |
[7] | Lin HE, Shaojun TANG, Tao WANG. STABILITY OF VISCOUS SHOCK WAVES FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY [J]. Acta mathematica scientia,Series B, 2016, 36(1): 34-48. |
[8] | Shengguo ZHU. BLOW-UP OF CLASSICAL SOLUTIONS TO THE COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH VACUUM [J]. Acta mathematica scientia,Series B, 2016, 36(1): 220-232. |
[9] | Weiwei WANG. ON GLOBAL BEHAVIOR OF WEAK SOLUTIONS OF COMPRESSIBLE FLOWS OF NEMATIC LIQUID CRYSTALS [J]. Acta mathematica scientia,Series B, 2015, 35(3): 650-672. |
[10] | Peijie HE, Qishu YAN. EQUIVALENCE OF THREE DIFFERENT KINDS OF OPTIMAL CONTROL PROBLEMS FOR STOKES EQUATIONS [J]. Acta mathematica scientia,Series B, 2015, 35(3): 709-718. |
[11] | Shu WANG, Zili XU. INCOMPRESSIBLE LIMIT OF THE NON-ISENTROPIC MAGNETOHYDRODYNAMIC EQUATIONS IN BOUNDED DOMAINS [J]. Acta mathematica scientia,Series B, 2015, 35(3): 719-745. |
[12] | Yunshun WU, Zhong TAN. ASYMPTOTIC BEHAVIOR OF THE STOKES APPROXIMATION EQUATIONS FOR COMPRESSIBLE FLOWS IN R3 [J]. Acta mathematica scientia,Series B, 2015, 35(3): 746-760. |
[13] | YE Zhuan. A NOTE ON GLOBAL WELL-POSEDNESS OF SOLUTIONS TO BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION [J]. Acta mathematica scientia,Series B, 2015, 35(1): 112-120. |
[14] | XU Qiu Ju,CAI Hong,TAN Zhong. TIME PERIODIC SOLUTIONS OF NON-ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM [J]. Acta mathematica scientia,Series B, 2015, 35(1): 216-234. |
[15] | YANG Wan-Rong, JIU Quan-Sen. GLOBAL REGULARITY FOR MODIFIED CRITICAL DISSIPATIVE QUASI-GEOSTROPHIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(6): 1741-1748. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 103
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|