[1] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349--381
[2] Ambrosetti A, Struwe M. A note on the problem -Δu=λu+u|u|2*-2. Manuscripta Math, 1986, 54: 373--379
[3] Atkinson F V, Brezis H, Peletier L A. Nodal solutions of elliptic equations with critical Sobolev exponents. J Diff Equ, 1990, 85: 151--170
[4] Brezis H, Lieb E. Relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88: 486--490
[5] Brezis H, Kato T. Remarks on the Schrödinger operator with singular complex potentials. J Math Pures Appl,1979, 58: 137--151
[6] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Comm Pure Appl Math, 1983, 36: 437--478
[7] Cao D, Peng S. A global compactness result for singular elliptic problems involving critical Sobolev exponent. Proc Amer Math Soc, 2003, 131: 1857--1866
[8] Cao D, Yan S. Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential. Cal Var, 2010, 38: 471--501
[9] Capozzi A, Fortunato D, Palmieri G. An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann Inst H Poincare Anal Non Lineaire, 1985, 2: 463--470
[10] Cerami G, Solimini S, Struwe M. Some existence results for superlinear elliptic boundary value problems involving critical exponents. J Funct Anal, 1986, 69: 289--306
[11] Devillanova G, Solomini S. Concentration estimates and multiple solutions to elliptic problems at critical growth. Adv Diff Equ, 2002, 7: 1257--1280
[12] Devillanova G, Solomini S. A multiplicity result for elliptic equations at critical growth in low dimension. Comm Comtemp Math, 2003, 5: 171--177
[13] Egnell E. Elliptic boundary value problems with singular coefficients and critical nonlinearities. Indiana Univ Math J, 1989, 38: 235--251
[14] Ekeland I, Ghoussoub N. Selected new aspects of the calculus of variations in the large. Bull Amer Math Soc, 2002, 39: 207--265
[15] Fortunato D, Jannelli E. Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains. Proc Roy Soc Edinburgh Sect A, 1987, 105: 205--213
[16] Lions P L. The concentration-compactness principle in the calculus of variations: the limit case. Rev Mat Iberoamericana, 1985, 1: 45--121, 145--201
[17] Pohozaev I. Eigenfunctions of the equation $\Delta u+f(u)=0. Dokl Akad Nauk SSSR, 1965, 165: 33--36
[18] Pucci P, Serrin J. A general variational identity. Indiana Univ Math J, 1986, 35: 681--703
[19] Rabinowitz P. Minimax Methods in Critical Points Theory with Applications to Differential Equations. CBMS Series, no 65. Providence, RI: Amer Math Soc, 1986
[20] Struwe M. A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math Z, 1984, 187: 511--517
[21] Willem M. Minimax Theorems. Boston: Birkhäuser, 1996
|