[1] Abbondandolo A, Molina J. Index estimates for strongly indefinite functionals, periodic orbits and homoclinic solutions of first order Hamiltonian systems. Calc Var, 2000, 11: 395--430
[2] Brézis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Maths, 1983, 36: 437--477
[3] Brézis H, Lieb E H. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88: 486--290
[4] Chabrowski J, Szulkin A. On a semilinear Schr\"odinger equation with critical Sobolev exponent. Proc Amer Math Soc, 2001, 130: 85--93
[5] Chabrowski J, Yang Jianfu. Existence theorems for the Schr\"odinger equation involving a critical Sobolev exponent. Z Angew Math Phys, 1998, 49: 276--293
[6] Chabrowski J, Yang Jianfu. On Schr\"odinger equation with periodic potential and critical Sobolev exponent.
Topol Method Nonlinear Anal, 1998, 12: 245--261
[7] Chang K C, Guo M Z. Lectures on Functional Analysis, Vol 2. Beijing: Beijing University Press, 1990
[8] Zelati Coti V, Rabinowitz P H. Homoclinic type solutions for a semilinear elliptic PDE on RN. Comm Pure Appl Math, 1992, 45: 1217--1296
[9] Li Shujie, Ding Yanheng. Some existence results of solutions for the semilinear elliptic equations on RN. Comm Pure Appl Math, 1992, 45: 1217--1296
[10] Jeanjean L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem in RN. Proc Royal Soc Edinburgh, 1999, 129A: 787--809
[11] Kryszewski W, Szulkin A. Generalized linking theorem with an application to a semilinear Schrödinger
equation. Adv Diff Equ, 1998, 3: 441--472
[12] Lions P L. The concentration-compactness principle in the calculus of variations, The locally compact case I. Ann Inst H Poincar\'e Anal Non Lin\'eaire, 1984, 1: 109--145
[13] Lions P L. The concentration-compactness principle in the calculus of variations, The locally compact case II. Ann Inst H Poincar\'e Anal non lin\'eaire, 1984, 1: 223--283
[14] Pankov A A. Semilinear elliptic equations in RN with nonstabilizing coefficients. Ukraine Math J, 1987, 41(9): 1075--1078
[15] Pankov A A, Pfl\"uger K. On a semilinear Schrödinger equation with periodic potential. Nonlinear Analysis TMA, 1998, 33: 593--609
[16] Talenti G. Best constant in Sobolev inequality. Ann Math Pura Appl, 1976, 101: 353--372
[17] Troestler C, Willem M. Nontrivial solutions of a semilinear Schr\"odinger equation. Comm Partial Differ Equ, 1996, 21: 1431--1449
[18] Li S, Willem M. Applications of local linking to critical point theory. J Math Anal Appl, 1995, 189: 6--32
[19] Reed M, Simon B. Methods of Mathematical Physics IV. New York: Academid Press, 1978
|