[1] Huisken G, Sinestrari C. Mean curvature flow singularities for mean convex surfaces. Calc Var Partial Differ Equ, 1999, 8: 1--14
[2] Huisken G, Sinestrari C. Convexity estimates for mean curvature flow and singularities of mean convex surfaces.
Acta Math, 1999, 183: 45--70
[3] Wang X J. Convex solutions to the mean curvature flow. arXiv: math.DG/0404326v1 (submitted in Ann Math, 2003
[4] Sheng W M, Wang X J. Singularity profile in the mean curvature flow. Methods Appl Anal, 2009, 16: 139--155
[5] Liu Y N, Jian H Y. Evolution of hypersurfaces by mean curvature minus an externa force field. Sci China Ser A, 2007, 50(2): 231--239
[6] Jian H Y, Liu Y N. Long-time existence of mean curvature with externa force fields. Pacific J Math, 2008, 234: 311--325
[7] Liu Y N, Jian H Y. A curve flow evolved by a fourth order parabolic equation. Sci China Ser A, 2009, 52(10): 2177--2184
[8] Schulze F. Evolution of convex hypersurfaces by powers of the mean curvature. Math Z, 2005, 251: 721--733
[9] Schulze F. Nonlinear Evolution by mean curvature and isoperimetric inequalities. J Differ Geom, 2008, 79: 197--241
[10] White B. The nature of singularities in mean curvature flow of mean-convex sets. J Amer Math Soc, 2003, 16: 123--138; 197--241
[11] Gui C F, Jian H Y, Ju H J. Properties of translating solutions to mean curvature flow. Discrete Contin Dyn Syst, 2010, 28: 441--453
[12] Jian H Y, Liu Q H, Chen X Q. Convexity and symmetry of translating solitons in mean curvature flows. Chin Ann
Math, 2005, 26B: 413--422
[13] Altschuler S, Angenent S B, Giga Y. Mean curvature flow through singularities for surfaces of rotation. J Geom Anal, 1995, 5(3): 293--358
[14] Wang X J. Interior gradient estimates for mean curvature equations. Math Z, 1998, 228: 73--81
[15] Jian H Y, Ju H J. Existence of translating solutions to the flow by powers of mean curvature on unbounded domains. Preprint, 2010
[16] Jian H Y, Ju H J, Sun W. Traveling fronts of curvature flow with external force field. Commun Pure Appl Anal,
2010, 9: 975--986
[17] Aarons M. Mean curvature flow with a forcing term in Minkowski space. Calc Var Partial Differ Equ, 2005, 25: 205--246
[18] Ecker K. Interior estimates and longtime solutions for mean curvature flow of noncompact spaceike hypersurfaces in Minkowski space. J Differ Geom, 1997, 45: 481--498
[19] Ecker K. On mean curvature flow of spacelike hypersurfaces in asymptotical flat spacetimes. J Austral Math Soc Ser A, 1993, 55: 41--59
[20] Ecker K, Huisken G. Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes. Comm Math Phys, 1991, 135: 595--613
[21] Huisken G, Yau S T. Definition of center of mass for isolated physical system and unique foliations by stable spheres with constant curvature. Invent Math, 1996, 124: 281--311
[22] Liu Y N, Jian H Y. Evolution of spacelike hypersurfaces by mean curvature minus external force field in Minkowski space. Advanced Nonlinear Studies, 2009, 9: 513--522
[23] Jian H Y. Translating solitons of mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space. J Differ Equ, 2006, 220: 147--162
[24] Ju H J, Lu J, Jian H Y. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Commun Pure Appl Anal, 2010, 9: 967--973
[25] Guan B, Jian H, Schoen R. Entire spacelike hypersurfaces of constant Gauss curvature in Minkowski space. J Rene Angew Math, 2006, 595: 167--188
[26] Treibergs A E. Entire spacelike hypersurfaces of constant mean curvature in Minkowski space. Invent Math, 1982, 66: 39--56
[27] Li C. Monotonocity and symmetry of solutions of nonlinear elliptic equations on unbounded domains. Commu Partial Differ Equ, 1991, 16: 585--612
[28] Li Y, Ni W M. Radial symmetry of positive solutions of nonlinear elliptic equations in Rn. Comm Part Diff Equ, 1993, 18: 1043--1054
[29] Jian H Y, Wang X J. Continuity estimates for the Monge-Ampère equation. SIAM J Math Anal, 2007, 39: 608--626
[30] Jian H Y, Wang X J. Bernsterin theorem and regularity for a class of Monge Ampère equations. preprint, 2010
[31] Guan B, Jian H Y. The Monge-Ampère equation with infinite boundary value. Pacific J Math, 2004, 216: 77--94
[32] Jian H Y. Hessian equations with infinite Dirichlet boundary value. Indiana Univ Math J, 2006, 55: 1045--1062
[33] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. New York: Springer-Verlag, 1983 |