[1] MacGregor T H. Functions whose derivative has a positive real part. Trans Amer Math Soc, 1962, 104: 532--537
[2] Caplinger T R, Causey W M. A class of univalent functions. Proc Amer Math Soc, 1973, 39: 357--361
[3] Padmanabhan K S, On a certain class of functions whose derivatives have a positive real part in the unit disc. Ann Polon Math, 1970/1971, 23: 73--81
[4] Juneja O P, Mogra M L. A class of univalent functions. Bull Sci Math 2 S\'{e}rie, 1979, 103: 435--447
[5] Selvaraj C. A subclass of close-to-convex functions. Southeast Asian Bulletin of Mathematics, 2004, 28: 113--123
[6] Duren P. Univalent Functions. New York: Springer-Verlag, 1983
[7] Hallenbeck D J, MacGregor T H. Linear Problems and Convexity Techniques in Geometric Function Theory. Boston: Pitman Advanced Publishing Program, 1984
[8] Robertson M S. On the theory of univalent functions. Ann Math, 1936, 37: 374--408
[9] Janowski W. Some extremal problems for certain families of analytic functions. Ann Polon Math, 1973, 28: 297--326
[10] Goodman A W. Univalent Functions, Vol II. Tampa, FL: Mariner Publishing Co Inc, 1983
[11] Parvatham R, Shanmugham T N. On analytic functions with reference to an integral operator. Bull Austral Math Soc, 1983, 28: 207--215
[12] Aghalary R, Kulkarni S R. Some properties of the integral operators in univalent function. Studia Univ Babes-Bolyai Mathematica, 2001, 46(1): 3--9
|