[1] Abgrall R, Saurel R. Discrete equations for physical and numerical compressible multiphase mixtures. J Comp Phys, 2003, 186: 361--396
[2] Adalsteinsson D, Sethian J A. A fast level set method for propagating interfaces. J Comp Phys, 1993, 118: 269--277
[3] Baer M, Nunziato J. A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Int J Multiphase Flows, 1986, 12: 861--889
[4] Bird R, Stewart W, Lightfoot E. Transport Phenomena Second Edition. New York: John Wiley & Sons, 2002
[5] Chern I-L, Glimm J, McBryan O, Plohr B, Yaniv S. Front tracking for gas dynamics. J Comp Phys, 1986, 62: 83--110
[6] Chinnayya A, Daniel E, Saurel R. Modelling detonation waves in heterogeneous energetic materials. J Comp Phys, 2004, 196: 490--538
[7] Drew D, Passman S. Theory of Multicomponent Fluids. New York: Springer-Verlag, 1999
[8] Gavrilyuk S L, Saurel R. Rankine-hugoniot relations for shocks in heterogeneous mixtures. J Fluid Mech, 2007, 575: 495--507
[9] Glimm J, Graham M J, Grove J W, Li X -L, Smith T M, Tan D, Tangerman F, Zhang Q. Front tracking in two and three dimensions.
Comput Math Appl, 1998, 35: 1--11
[10] Glimm J, Grove J W, Li X -L, Shyue K -M, Zhang Q, Zeng Y. Three dimensional front tracking. SIAM J Sci Comp, 1998, 19: 703--727
[11] Glimm J, Grove J W, Lindquist W B, McBryan O, Tryggvason G. The bifurcation of tracked scalar waves. SIAM J Comp, 1988, 9: 61--79
[12] Glimm J, Li X -L, Liu Y -J, Xu Z L, Zhao N. Conservative front tracking with improved accuracy. SIAM J Numer Anal, 2003, 41: 1926--1947
[13] Grove J W. Front tracking and shock-contact interactions//Stepleman R, ed. Advances in Computer Methods for Partial Differential Equations, Vol VI. IMACS, Dept of Comp Sci, Rutgers Univ, New Brunswick, 1987
[14] Grove J W, Menikoff R. The anomalous reflection of a shock wave at a material interface.J Fluid Mech, 1990, 219: 313--336
[15] Harlow F, Amsden A. Fluid dynamics. LANL Monograph LA-4700, National Technical Information Service, 1971
[16] Le Metayer O, Massoni J, Saurel R. Modelling evaporation fronts with reactive riemann solvers. J Comp Phys, 2005, 205: 567--610
[17] Liu X F, Li Y H, Glimm J, Li X L. A front tracking algorithm for limited mass diffusion. J Comp Phys, 2007, 222: 644--653
[18] Menikoff R, Plohr B. The riemann problem for fluid flow of real materials. Rev Mod Phys, 1989, 61: 75--130
[19] Mihalas Dimitri, Weibel-Mihalas Barbara. Foundations of Radiation Hydrodynamics. Dover Books on Physics, Mineola. New York: Dover Publications, Inc, 1999
[20] Miller G H, Puckett E G. A high-order godunov method for multiple condensed phases. J Comp Phys, 1996, 128: 134--164
[21] Niculescu Constantin, Persson Lars-Erik. Convex Functions and Their Applications, A contemporary Approach. New York: Springer-Verlag+Business Media, Inc, 2006
[22] Osher S, Sethian J. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi equations. J Comp Phys, 1988, 79: 12--49
[23] Osher S J, Fedkiw R P. Level Sets and Dynamic Implicit Surfaces. New York: Springer-Verlag, 2002
\REF{
[24]} Perigaud G. Saurel R. A compressible flow model with capillary
effects. J Comp Phys, 2005, {\bf 209}: 139--78
\REF{
[25]}Petitpas Fablen, Franquet Erwin, Saurel Richard, Le Metayer Olivier.
A relaxation-projection method for compressible flows. part ii:
Artificial heat exchanges for multiphase shocks.
J Comp Phys, 2007, {\bf 225}: 2214--2248
\REF{
[26]}Puckett Elbridge G, Almgren Ann S, Bell John B, Marcus Daniel L,
Rider William J. A high-order projection method for tracking fluid
interfaces in variable density incompressible flows.
J Comp Phys, 1997, {\bf 130}: 269--282
\REF{
[27]} Saurel R, Abgrall R. A multiphase godunov method for
compressible multifluid and multiphase flows. J Comp Phy, 1999, {\bf 150}: 425--467
\REF{
[28]} Saurel R, Chinnayya A, Renaud F. Thermodynamic analysis and
numerical resolution of a turbulent-fully ionized plasma flow model. Shock
Waves, 2003, {\bf 13}: 283--97
\REF{
[29]} Saurel Richard, Franquet Erwin, Daniel Eric, Le Metayer Olivier.
A relaxation-projection method for compressible flows. part i: The numerical
equation of state for the euler equations. J Comp Phys, 2007, {\bf 223}: 822--845
\REF{
[30]} Saurel R, Gavrilyuk S, Renaud F. A multiphase model with
internal degrees of freedom: application to shock-bubble interaction.
J Fluid Mech, 2003, {\bf 495}: 283--321
\REF{
[31]} Saurel R, Le Metayer O, Massoni J, Gavrilyuk S. Shock jump
relations for multiphase mixtures with stiff mechanical relaxation.
Shock Waves, 2007, {\bf 16}: 209--232
\REF{
[32]} Saurel R, Petitpas F, Abgrall R. Modelling phase transition
in metastable liquids: application to cavitating and flashing flows.
J Fluid Mech, 2008, {\bf 607}: 313--50
\REF{
[33]} Saurel Richard, Petitpas Fabien, Berry Ray A. Simple and
efficient relaxation methods for interfaces separating compressible fluids,
cavitating flows and shocks in multiphase mixtures.
J Comp Phys, 2009, {\bf 228}: 1678--1712
\REF{
[34]} Sethian J A. Level Set Methods. Cambridge University Press, 1996
\REF{
[35]} Thompson P. A fundamental derivative in gasdynamics.
Phys Fluids, 1971, {\bf 14}: 1843--49
\REF{
[36]}
Thompson P. Compressible-Fluid Dynamics. New York: McGraw-Hill, 1972
\REF{
[37]}
Wightman A. Convexity and the notion of equilibrium state in
thermodynamics and statistical mechanics//Israel R, ed.
Convexity in the Theory of Lattice Gases. Princeton, NJ: Princeton Univ Press, 1979
\REF{
[38]}Youngs D L. Time-dependent multi-material flow with large fluid
distortion//Baines M J, ed. Numerical Methods for Fluid Dynamics.
New York: Academic Press, 1982
\REF{
[39]}
Youngs D L. An interface tracking method for a 3d eulerian hydrodynamics code.
Tech Report, Atomic Weapons Research Establishment, Design Mathematics Division, 1987
\REF{
[40]}
Zeldovich Ya, Raizer Yu. Physics of Shock Waves and
High-Temperature Hydrodynamic Phenomena. Mineola, New York: Dover Publications, Inc, 2002 |