[1] Lefebvre A. Atomization and Sprays. Taylor and Francis, 1989
[2] Bayvel L, Orzechowski Z. Liquid Atomization. Taylor and Francis, 1993
[3] Furusaki S, Fan L -S, Garside J. The Expanding World of Chemical Engineering. 2nd ed. Taylor and Francis, 2001
[4] Deckwer W -D. Bubble Column Reactors. Wiley, 1992
[5] Prosperetti A, Tryggvason G. Computational Methods for Multiphase Flow. Cambridge University Press, 2007
[6] Glimm J, Marchesin D, McBryan O. A numerical method for two phase ow with an unstable interface.J Comput Phys, 1981, 39: 179--200
[7] Glimm J. Tracking of interfaces in uid ow: Accurate methods for piecewise smooth problems, transonic shock and multidimensional flows//Meyer R E, ed. Advances in Scientific Computing. New York: Academic Press, 1982
[8] Glimm J, McBryan O. A computational model for interfaces. Adv Appl Math, 1985, 6: 422--435
[9] Glimm J, McBryan O, Menikoff R, Sharp D. Front tracking applied to rayleigh-taylor instability. SIAM J Comput, 1986, 7: 230--251
[10] Chern I -L, Glimm J, McBryan O, Plohr B, Yaniv S. Front tracking for gas dynamics. J Comput Phys, 1986, 62: 83--110
[11] Glimm J, Grove J, Lindquist B, McBryan O, Tryggvason G. The bifurcation of tracked scalar waves. SIAM J Sci Stat Comput, 1988, 9: 61--79
[12] Du J, Fix B, Glimm J, Jia X, Li X, Li Y, Wu L. A simple package for front tracking. J Comput Phys, 2006, 213: 613--628
[13] Brackbill J U, Kothe D B, Zemach C. A continuum method for mod-eling surface tension. J Comput Phys, 1992, 100: 335--354
[14] Osher S, Sethian J. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys, 1988, 79: 12--49
[15] Jacqmin D.Calculation of two-phase Navier-Stokes ows using phasefeld modeling. J Comput Phys, 1999, 155: 96--127
[16] Takewaki H, Nishiguchi A, Yabe T. Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations. J Comput Phys, 1985, 61: 261--268
[17] Unverdi S O, Tryggvason G. A front-tracking method for viscous. incompressible, multiuid ows. J Comput Phys, 1992, 100: 25--37
[18] Ishii M. Thermouid dynamic theory of two-phase ows. Eyrolles, 1975
[19] Tryggvason G, Scardovelli R, Zaleski S. Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge University Pres, 2010
[20] E W, Enquist B. The heterogeneous multiscale methods. Comm Math Sci, 2003, 1: 87--133
[21] Launder B E, Spalding D B. Lectures in Mathematical Models of Turbulence. Academic Press, 1972
[22] Amsden A A, Harlow F. Transport of turbulence in numerical uid dynamics. J Comput Phys, 1968, 3: 94
[23] Zhang D Z, Prosperetti A. Ensemble phase-averaged equations for bubbly ows. Phys Fluids, 1994, 6: 2956--2970
[24] Drew D A, Passman S L. Theory of Multicomponent Fluids. Springer, 1999
[25] Crowe C, Sommerfeld M, Tsuji Y. Multiphase Flows with Droplets and Particles. CRC Press, 1998
[26] Lu J, Tryggvason G. Effect of bubble deformability in turbulent bubbly up ow in a vertical channel. Phys Fluids, 2008, 20: 040701
[27] Serizawa A, Kataoka I, Michiyoshi I. Turbulence structure of air-water bubbly ow{II. local properties. Int J Multiphase Flow, 1975, 2: 235--246
[28] Serizawa A, Kataoka I, Michiyoshi I. Turbulence structure of air-water bubbly ow{III. transport properties. Int J Multiphase Flow, 1975, 2: 247--259
[29] Drew D, Jr R T L. The virtual mass and lift force on a sphere in rotating and straining inviscid flow. Int J Multiphase Flows, 1987, 13: 113--121
[30] Biswas S, Esmaeeli A, Tryggvason G. Comparison of results from dns of bubbly ows with a two-fluid model for two-dimensional laminar flows. Int J Multiphase Flows, 2005, 31: 1036--1048
[31] Antal S P, Lahey R T, Flaherty J E. Analysis of phase distribution in fully developed laminar bubbly two-phase flows. Int J Multiphase
Flow, 1991, 15: 635--652
[32] Azpitarte O E, Buscaglia G C. Analytical and numerical evaluation of two-fluid model solutions for laminar fully developed bubbly two-phase
flows. Chem Eng Sci, 2003, 58: 3765--3776
[33] Lu J, Tryggvason G. Numerical study of turbulent bubbly downflows in a vertical channel. Phys Fluids, 2006, 18:103302
[34] Lu J, Tryggvason G. Effect of bubble size in turbulent bubbly downflow in a vertical channel. Chem Eng Sci, 2007, 62: 3008--3018
[35] Kunz R F, Gibeling M R M H J, Tryggvason G, Fontaine A A, Petrie H L, Ceccio S L. Validation of two-fluid eulerian cfd modeling for microbubble drag reduction across a wide range of reynolds numbers. J Fluids Eng, 2007, 129: 66--79
[36] Patel V C, Rodi W, Scheuerer G. Turbulence models for near-wall and low reynolds number flows: A review. AIAA Journal, 1984, 23: 1308--1319
[37] Biswas S, Tryggvason G. The transient buoyancy driven motion of bubbles across a two-dimensional quiescent domain. Int J Multiphase Flow, 2007, 33: 1308--1319
[38] Palacios J, Tryggvason G. The transient motion of buoyant bubbles in a vertical couette flow. AMD Contemporary Mathematics Series, 2008, 466: 135--146
[39] Liovic P, Lakehal D, Liow J G. Les of turbulent bubble formation and breakup by use of interface tracking//Geurts B, Friedrich R, M\'etais O, eds. Direct and Large-Eddy Simulation --V, ERCOFTAC Series, Vol 9. Dordrecht: Kluwer Academic Publishers, 2004
[40] Thomas S, Esmaeeli A, Tryggvason G. Multiscale computations of thin films in multiphase flows. Int J Multiphase Flow, 2010, 36: 71--77
\REF{
[41]} Yoon Y, Baldessari F, Ceniceros H, Leal L G. Coalescence of two equal-sized deformable drops in an axisymmetric flow. Phys Fluids, 2007, 19: 102102
[42] Dai B, Leal L. G. The mechanism of surfactant effects on drop coalescence. Phys Fluids, 2008, 20: 040804--1--13
[43] Baldessari F, Homsy G, Leal L. Linear stability of a draining film squeezed between two approaching droplets. J Colloid and Interface Science, 2007, 307: 188--202
[44] Lowengrub J, Goodman J, Lee H, Longmire E, Shelley M, Truskinovsky L. Topological transitions in liquid/liquid interfaces//Athanasoponlos I, et al, eds. Free Boundary Problems: Theory and Applications. Chapman & Hall/CRC, 1999: 221
|