Acta mathematica scientia,Series B ›› 2009, Vol. 29 ›› Issue (6): 1737-1748.doi: 10.1016/S0252-9602(10)60014-8
• Articles • Previous Articles Next Articles
Zhiliang Xu, Guang Lin
Received:
2009-11-03
Online:
2009-11-20
Published:
2009-11-20
Supported by:
Research was supported in part by NSF grant DMS-0800612. Research was supported by Applied Mathematics program of the US DOE Office of Advanced Scientific Computing Research. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830.
CLC Number:
Zhiliang Xu, Guang Lin. SPECTRAL/HP ELEMENT METHOD WITH HIERARCHICAL RECONSTRUCTION FOR SOLVING NONLINEAR HYPERBOLIC CONSERVATION LAWS[J].Acta mathematica scientia,Series B, 2009, 29(6): 1737-1748.
[1] Baumann C E, Oden T J. A discontinuous hp finite element method for the Euler and the Navier-Stokes equations. Int J Numer Methods Fluids, 1999, 31: 79--95
[26] Liu Y -J, Shu C -W, Xu Z -L. Hierarchical reconstruction with up to second degree remainder for solving nonlinear conservation law. [27] Lomtev I, Quillen C B, Karniadakis G E. Spectral/hp methods for viscous compressible flows on unstructured 2d meshes. J Comput Phys, 1998, 144(2): 325--357 [28] Lomtev I, Karniadakis G E. A discontinuous Galerkin method for the Navier-Stokes equations. Int J Numer Methods Fluids, 1999, 29: 587--603 [29] Mavriplis D J, Venkatakrishnan V. A unified multigrid solver for the Navier-Stokes equations on mixed element meshes. AIAA-95-1666, San Diego, CA, 1995 [30] Oden T J, Babuska I, Baumann C E. A discontinuous hp finite element method for diffusion problems. J Comput Phys, 1998, 146: 491--519 [31] Patera A T. A spectral method for fluid dynamics: Laminar flow in a channel expansion. J Comput Phys, 1984, 54: 468--488 [32] Qiu J, Shu C -W. Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J Sci Comput, 2005, 26: 907--929 [33] Reed W, Hill T. Triangular mesh methods for the neutron transport equation. Tech report la-ur-73-479, Los Alamos Scientific Laboratory, 1973 [34] Sherwin S J, Karniadakis G E. Tetrahedral hp finite elements: Algorithms and flow simulations. J Comput Phys, 1995, 124(1): 14--45 [35] Sherwin S J, Karniadakis G E. A triangular spectral element method; applications to the incompressible Navier-Stokes equations. [36] Shu C -W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws//Quarteroni A, ed. Cockburn B, Johnson C, Shu C -W, Tadmor E, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics 1697. Berlin: Springer, 1998: 325--432 [37] Shu C -W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes. J Comput Phys, 1988, 77: 439--471 [38] Shu C -W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J Comput Phys, 1989, 83: 32--78 [39] Sidilkover D, Karniadakis G E. Non-oscillatory spectral element Chebyshev method for shock wave calculations. J Comput Phys, 1993, 107(1): 10--22 [40] van Leer B. Toward the ultimate conservative difference scheme: II. Monotonicity and conservation combined in a second order scheme. [41] van Leer B. Towards the ultimate conservative difference scheme: IV. A new approach to numerical convection. J Comput Phys, 1977, 23: 276--299 [42] van Leer B. Towards the ultimate conservative difference scheme: V. A second order sequel to Godunov's method. J Comput Phys, 1979, 32: 101--136 [43] Wang Z J, Liu Y. Spectral (finite) volume method for conservation laws on unstructured grids III: extension to one-dimensional systems. J Sci Comput, 2004, 20: 137--157 [44] Woodward P, Colella P. Numerical simulation of two-dimensional fluid flows with strong shocks. J Comput Phys, 1984, 54: 115--173 [45] Xu Z -L, Liu Y -J, Shu C -W. Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO type linear reconstruction and partial neighboring cells. J Comput Phys, 2009, 228: 2194--2212 [46] Xu Z -L, Liu Y -J, Shu C -W. Hierarchical reconstruction for spectral volume method on unstructured grids. J Comput Phys, 2009, 228: 5787--5802 [47] Warburton T C, Karniadakis G E. A discontinuous Galerkin method for the viscous MHD equations. J Comput Phys, 1999, 152: 608--641 [48] Weatherill N P, Hassan O. Efficient three-dimensional Delaurnay triangularisation with automatic point creation and imposed boundary constaints. Int J Numer Methods Eng, 1994, 37: 2005 |
[1] | Zhijuan ZHANG, Xijun YU, Yanzhen CHANG. LOCAL DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC INTERFACE PROBLEMS [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1519-1535. |
[2] | Rinaldo M. Colombo, Magali L′ecureux-Mercier. NONLOCAL CROWD DYNAMICS MODELS FOR SEVERAL POPULATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(1): 177-196. |
[3] | SUN Mei-Na. A NOTE ON THE INTERACTIONS OF ELEMENTARY WAVES FOR THE AR TRAFFIC FLOW MODEL WITHOUT VACUUM [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1503-1512. |
[4] | ZHU Peng, XIE Zi-Qing, ZHOU Shu-Zi. A COUPLED CONTINUOUS-DISCONTINUOUS FEM APPROACH FOR CONVECTION DIFFUSION EQUATIONS [J]. Acta mathematica scientia,Series B, 2011, 31(2): 601-612. |
[5] | Zhu Changjiang, Xu Xuewen. A NOTE ON THE RIEMANN PROBLEM TO HYPERBOLIC CONSERVATION LAWS [J]. Acta mathematica scientia,Series B, 1998, 18(S1): 1-4. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 106
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 97
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|