[1] Avkhadiev F, Wirths K.Schwarz-Pick Type Inequalities. Basel: Birkh$\ddot{\rm a}$user, 2009 [2] Bonk M. On Bloch's constant. Proc Amer Math Soc, 1990, 110(4): 889-894 [3] Bracci F, Trapani S. Notes on pluripotential theory. Rend Mat, Serie VII, 2007, 2007: 197-264 [4] Burns D, Krantz S. Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary. J Amer Math Soc, 1994, 7: 661-676 [5] Chen H, Nie X. Schwarz lemma: the case of equality and an extension. J Geom Anal, 2021, https://doi.org/10.1007/s12220-021-00771-5 [6] Garnett J. Bounded Analytic Functions.New York: Academic Press, 1981 [7] Osserman R. A sharp Schwarz inequality on the boundary. Proc Amer Math Soc, 2000, 128: 3513-3517 [8] Gong S.Convex and Starlike Mappings in Several Complex Variables. Beijing: Science Press, 1998 [9] Graham I, Hamada H, Kohr G. A Schwarz lemma at the boundary on complex Hilbert balls and applications to starlike mappings. J Anal Math, 2020, 140: 31-53 [10] Hamada H. A Schwarz lemma at the boundary using the Julia-Wolff-Carathéodory type condition on finite dimensional irreducible bounded symmetric domains. J Math Anal Appl, 2018, 465(1): 196-210 [11] Hamada H, Kohr G. A boundary Schwarz lemma for mappings from the unit polydisc to irreducible bounded symmetric domains. Math Nachr, 2020, 293(7): 1345-1351 [12] Hamada H, Kohr G.A rigidity theorem at the boundary for holomorphic mappings with values in finite dimensional bounded symmetric domains. Math Nachr, 2021, 294(11): 2151-2159 [13] He L, Tu Z. The Schwarz lemma at the boundary of the non-convex complex ellipsoids. Acta Mathematica Scientia, 2019, 39B(4): 915-926 [14] Huang X. A boundary rigidity problem for holomorphic mappings on some weakly pseudoconvex domains. Canad J Math, 1995, 47(2): 405-420 [15] Huang X. A preservation principle of extremal mappings near a strongly pseudoconvex point and its applications. Ill J Math, 1994, 38(2): 283-302 [16] Huang X. On a semi-rigidity property for holomorphic maps. Asian J Math, 2003, 7(4): 463-492 [17] Kim K, Lee H.Schwarz's Lemma from a Differential Geometric Viewpoint. Singapore: World Scientific, 2011 [18] Krantz S.Function Theory of Several Complex Variables. Providence, RI: Amer Math Soc, 2001 [19] Liu T, Tang X. Schwarz lemma at the boundary of strongly pseudoconvex domain in $\mathbb{C}^n$. Math Ann, 2016, 366: 655-666 [20] Liu T, Tang X. A boundary Schwarz lemma on the classical domain of type $\mathcal{I}$. Sci China Math, 2017, 60(7): 1239-1258 [21] Liu T, Tang X. Schwarz lemma and rigidity theorem for holomorphic mappings on the unit polydisk in ${\mathbb{C}}^n$. J Math Anal Appl, 2020, 489(2): 124148 [22] Liu T, Tang X, Zhang W. Schwarz lemma at the boundary on the classical domain of type $\mathcal{III}$. Chin Ann Math Ser B, 2020, 41(3): 335-360 [23] Liu T, Ren G. The growth theorem of convex mappings on bounded convex circular domains. Sci China Math, 1998, 41(2): 123-130 [24] Liu T, Wang J, Tang X.Schwarz lemma at the boundary of the unit ball in ${\mathbb{C}}^n$ and its applications. J Geom Anal, 2015, 25: 1890-1914 [25] Tang X, Liu T, Zhang W. Schwarz lemma at the boundary on the classical domain of type $\mathcal{II}$. J Geom Anal, 2018, 28(2): 1610-1634 [26] Tang X, Liu T, Zhang W. Schwarz lemma at the boundary and rigidity property for holomorphic mappings on the unit ball of ${\mathbb{C}}^n$. Proc Amer Math Soc, 2017, 145: 1709-1716 [27] Wang J, Liu T, Tang X. Schwarz lemma at the boundary on the classical domain of type $\mathcal{IV }$. Pacific J Math, 2019, 302: 309-333 [28] Wang X, Ren G. Boundary Schwarz lemma for holomorphic self-mappings of strongly pseudoconvex domains. Complex Anal Oper Theory, 2017, 11(2): 345-358 [29] Yau S. A general Schwarz lemma for Kähler manifolds. Amer J Math, 1978, 100(1): 197-203 [30] Zimmer A. Two boundary rigidity results for holomorphic maps. Amer J Math, 2022, 144(1): 119-168 |