Acta mathematica scientia,Series B ›› 2021, Vol. 41 ›› Issue (2): 493-504.doi: 10.1007/s10473-021-0213-2
• Articles • Previous Articles Next Articles
Zhongyuan LIU
Received:
2020-02-12
Online:
2021-04-25
Published:
2021-04-29
About author:
Zhongyuan LIU,E-mail:liuzy@henu.edu.cn
Supported by:
CLC Number:
Zhongyuan LIU. MULTIPLE SIGN-CHANGING SOLUTIONS FOR A CLASS OF SCHRÖDINGER EQUATIONS WITH SATURABLE NONLINEARITY[J].Acta mathematica scientia,Series B, 2021, 41(2): 493-504.
[1] Akhmediev N, Ankiewicz A. Partially coherent solitons on a finite background. Phys Rev Lett, 1999, 82(13):2661-2664 [2] Agrawal G P, Kivshar Y S. Optical solitons:from fibers to photonic crystals. Academic Press, 2003 [3] Akhmediev N, Królinowski W, Snyder A. Partially coherent solitons of variable shape. Phys Rev Lett, 1998, 81(21):4632-4635 [4] Berestycki H, Lions P L. Nonlinear scalar field equations, I, existence of a ground state. Arch Ration Mech Anal, 1983, 82(4):313-345 [5] Berestycki H, Lions P L. Nonlinear scalar field equations, Ⅱ, existence of infinitely many solutions. Arch Ration Mech Anal, 1983, 82(4):347-375 [6] Bartsch T, Willem M. Infinitely many radial solutions of a semilinear elliptic problem on RN. Arch Ration Mech Anal, 1993, 124(3):261-276 [7] Castro A, Cossio J, Neuberger J M. A sigh-changing solution for a superlinear Dirichlet problem. Rocky Mountain J Math, 1997, 27(4):1041-1053 [8] Conti M, Merizzi L, Terracini S. Radial solutions of superlinear equations on RN, Part I, A global variational approach. Arch Ration Mech Anal, 2000, 153(4):291-316 [9] Cao D, Li S, Liu Z. Nodal solutions for a supercritical semilinear problem with variable exponent. Cal Var PDEs, 2018, 57(2):38 [10] Cao D, Zhu X. On the existence and nodal character of solutions of semilinear elliptic equation. Acta Mathematica Scientia, 1988, 8B(3):285-300 [11] Cerami G, Solimini S, Struwe M. Some existence results for superlinear elliptic boundary problems involving critical exponents. J Funct Anal, 1986, 69(3):289-306 [12] Deng Y. The existence and nodal character of the solutions in Rn for semilinear elliptic equation involving critical Sobolev exponent. Acta Mathematica Scientia, 1989, 9B(4):385-402 [13] Deng Y, Peng S, Shuai W. Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3. J Funct Anal, 2015, 269(11):3500-3527 [14] Deng Y, Peng S, Wang J. Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent. J Math Phys, 2013, 54(1):011504 [15] Deng Y, Peng S, Wang J. Nodal soliton solutions for generalized quasilinear Schrödinger equations. J Math Phys, 2014, 55(5):051501 [16] Kulpa W. The Poincaré-Miranda theorem. Amer Math Mon, 1997, 104(6):545-550 [17] Lin T C, Belić M R, Petrović M S, Chen G. Ground states of nonlinear Schrödinger systems with saturable nonlinearity in R2 for two counterpropagating beams. J Math Phys, 2014, 55(1):011505 [18] Lin T C, Belić M R, Petrović M S, Aleksić N B, Chen G. Ground-state counterpropagating solitons in photorefractive media with saturable nonlinearity. J Opt Soc Am B, 2013, 30(4):1036-1040 [19] Lin T C, Belić M R, Petrović M S, Hajaiej H, Chen G. The virial theorem and ground state energy estimates of nonlinear Schrödinger equations in R2 with square root and saturable nonlinearities in nonlinear optics. Cal Var PDEs, 2017, 56(5):147 [20] Liu T C, Wang X, Wang Z Q. Orbital stability and energy estimate of ground states of saturable nonlinear Schrödinger equations with intensity functions in R2. Journal Diff Equations, 2017, 263(8):4750-4786 [21] Litchinitser N M, Królikowski W, Akhmediev N N, Agrawal G P. Asymmetric partially coherent solitons in saturable nonlinear media. Phys Rev E, 1999, 60(2):2377-2380 [22] Liu Z, Wang Z Q. On the Ambrosetti-Rabinowitz superlinear condition. Adv Nonlinear Stud, 2004, 4(4):563-574 [23] Maia L A, Miyagaki O H, Soares S. A sign-changing solution for an asymptotically linear Schrödinger equation. Proc Edin Math Soc, 2015, 58(3):697-716 [24] Miranda C. Un'osservazione su un teorema di Brouwer. Boll Un Mat Ital, 1940, 3(2):5-7 [25] Nehari Z. Characteristic values associated with a class of nonlinear second order differential equations. Acta Math, 1961, 105(3/4):141-175 [26] Ostrovskaya E A, Kivshar Y S. Multi-hump optical solitons in a saturable medium. J Opt B:Quantum Semiclassical Opt, 1999, 1(1):77-83 [27] Pohozaev S. Eigenfunctions of the equations △u +λf(u)=0. Dokl Akad Nauk SSSR, 1965, 165(1):36-39 [28] Ryder G H. Boundary value problem for a class of nonlinear differential equations. Pacific J Math, 1967, 22(3):477-503 [29] Struwe M. Superlinear elliptic boundary value problems with rotational symmetry. Arch Math, 1982, 39(3):233-240 [30] Stuart C A. Guidance properties of nonlinear planar waveguides. Arch Ration Mech Anal, 1993, 125(2):145-200 [31] Serrin J, Tang M. Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ Math J, 2000, 49(3):897-923 [32] Stuart C A, Zhou H S. Applying the mountain pass theorem to an asymptotically linear elliptic equation on RN. Commun PDEs, 1999, 24(9/10):1731-1758 [33] Stegeman G I, Christodoulides D N, Segev M. Optical spatial solitons:historical Perspectives. IEEE J Sel Top Quantum Electron, 2000, 6(6):1419-1427 [34] Szulkin A, Weth T. The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications. Boston:International Press, 2010:597-632 [35] Wang X, Liu T C, Wang Z Q. Existence and concentration of ground states for saturable nonlinear Schrödinger equations with intensity functions in R2. Nonlinear Anal, 2018, 173:19-36 [36] Willem M. Minimax Theorems. Basel:Birkhäser, 1996 |
[1] | Jae-Myoung KIM, Yun-Ho KIM, Jongrak LEE. RADIALLY SYMMETRIC SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING NONHOMOGENEOUS OPERATORS IN AN ORLICZ-SOBOLEV SPACE SETTING [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1679-1699. |
[2] | Chouha?d SOUISSI. MINIMAL PERIOD SYMMETRIC SOLUTIONS FOR SOME HAMILTONIAN SYSTEMS VIA THE NEHARI MANIFOLD METHOD [J]. Acta mathematica scientia,Series B, 2020, 40(3): 614-624. |
[3] | Lun GUO, Tingxi HU. MULTI-BUMP SOLUTIONS FOR NONLINEAR CHOQUARD EQUATION WITH POTENTIAL WELLS AND A GENERAL NONLINEARITY [J]. Acta mathematica scientia,Series B, 2020, 40(2): 316-340. |
[4] | Kun CHENG, Qi GAO. SIGN-CHANGING SOLUTIONS FOR THE STATIONARY KIRCHHOFF PROBLEMS INVOLVING THE FRACTIONAL LAPLACIAN IN RN [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1712-1730. |
[5] | Junhui XIE, Xiaozhong HUANG, Yiping CHEN. EXISTENCE OF MULTIPLE SOLUTIONS FOR A FRACTIONAL p-LAPLACIAN SYSTEM WITH CONCAVE-CONVEX TERM [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1821-1832. |
[6] | Wenbo WANG, Quanqing LI. EXISTENCE OF GROUND STATE SOLUTIONS TO HAMILTONIAN ELLIPTIC SYSTEM WITH POTENTIALS [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1966-1980. |
[7] | Huifang JIA, Gongbao LI. MULTIPLICITY AND CONCENTRATION BEHAVIOUR OF POSITIVE SOLUTIONS FOR SCHRÖDINGER-KIRCHHOFF TYPE EQUATIONS INVOLVING THE p-LAPLACIAN IN RN [J]. Acta mathematica scientia,Series B, 2018, 38(2): 391-418. |
[8] | Quanqing LI, Xian WU. EXISTENCE OF NONTRIVIAL SOLUTIONS FOR GENERALIZED QUASILINEAR SCHRÖDINGER EQUATIONS WITH CRITICAL OR SUPERCRITICAL GROWTHS [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1870-1880. |
[9] | Ruirui YANG, Wei ZHANG, Xiangqing LIU. SIGN-CHANGING SOLUTIONS FOR p-BIHARMONIC EQUATIONS WITH HARDY POTENTIAL IN RN [J]. Acta mathematica scientia,Series B, 2017, 37(3): 593-606. |
[10] | Jinguo ZHANG, Xiaochun LIU. THREE SOLUTIONS FOR A FRACTIONAL ELLIPTIC PROBLEMS WITH CRITICAL AND SUPERCRITICAL GROWTH [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1819-1831. |
[11] | Luyu ZHANG, Shiwang MA. GROUND STATE TRAVELLING WAVES IN INFINITE LATTICES [J]. Acta mathematica scientia,Series B, 2016, 36(3): 782-790. |
[12] | Jing ZHANG, Shiwang MA. INFINITELY MANY SIGN-CHANGING SOLUTIONS FOR THE BRÉZIS-NIRENBERG PROBLEM INVOLVING HARDY POTENTIAL [J]. Acta mathematica scientia,Series B, 2016, 36(2): 527-536. |
[13] | Liping XU, Haibo CHEN. MULTIPLICITY RESULTS FOR FOURTH ORDER ELLIPTIC EQUATIONS OF KIRCHHOFF-TYPE [J]. Acta mathematica scientia,Series B, 2015, 35(5): 1067-1076. |
[14] | SHANG Yue-Yun, WANG Li. MULTIPLE NONTRIVIAL SOLUTIONS FOR A CLASS OF SEMILINEAR POLYHARMONIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1495-1509. |
[15] | FAN Hai-Ning, LIU Xiao-Chun. MULTIPLE POSITIVE SOLUTIONS FOR A CLASS OF QUASI-LINEAR ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT [J]. Acta mathematica scientia,Series B, 2014, 34(4): 1111-1126. |
|