[1] Defant A, Floret K. Tensor Norms and Operator Ideals. Amsterdam:North-Holland, 1993 [2] Effros E G, Ruan Z J. Mapping spaces and lifting for operator spaces. Proc London Math Soc, 1994, 69:171-197 [3] Effros E G, Ruan Z.-J. The Grothendieck-Pietsch and Dvoretzky-Rogers theorem for operator spaces. J Funct Anal, 1994, 122:428-450 [4] Effros E G, Ruan Z J. On the analogues of integral mappings and local reflexivity for operator spaces. Indiana Univ Math J, 1997, 46:1289-1310 [5] Effros E G, Ruan Z J. Operator Spaces, London Mathematical Society Monographs, New Series, 23. New York:The Clarendon Press, Oxford University Press, 2000 [6] Goodner D B. Projections in normed linear spaces. Trans Amer Math Soc, 1950, 69:89-108 [7] Grothendieck A. Une caractérisation vectorielle-métrique des espaces L1. Canad J Math, 1955, 7:552-561 [8] Grothendieck A. Products Tensoriels Topologiques et Espaces Nuclearies. Memoirs of the American Mathematical Society 16. Providence, RJ:Amer Math Soc, 1955 [9] Hasumi M. The extension property of complex Banach spaces. Tôhoku Math J, 1958, 10:135-142 [10] Kelley J L. Banach spaces with the extension property. Trans Amer Math Soc, 1952, 72:323-326 [11] Lacey H E. The Isometric Theory of Classical Banach Spaces. Grundlehren Math Wiss 208. New York:Springer, 1974 [12] Nachbin L. A theorem of the Hahn-Banach type for linear trsformation. Trans Amer Math Soc, 1950, 68:28-46 [13] Paulsen V. Completely Bounded Maps and Operator Algebras. Cambridge:Cambridge University Press, 2002 [14] Pisier G. Introduction to Operator Space Theory. London Math Soc Lecture Notes Series, 294. Cambridge:Cambridge University Press, 2003 |