Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (6): 1881-1902.
• Articles • Previous Articles Next Articles
Hanbing LIU, Haijun XIAO
Received:
2017-03-31
Revised:
2018-01-20
Online:
2018-12-25
Published:
2018-12-28
Contact:
Hanbing LIU
E-mail:hanbing272003@aliyun.com
Supported by:
Hanbing LIU, Haijun XIAO. BOUNDARY FEEDBACK STABILIZATION OF BOUSSINESQ EQUATIONS[J].Acta mathematica scientia,Series B, 2018, 38(6): 1881-1902.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Barbu V, Triggiani R. Internal stabilization of Navier-Stokes equations with finite dimensional controllers. Indiana Univ Math J, 2004, 53:1443-1494 [2] Fursikov A V. Stabilization for the 3D Navier-Stokes systems by feedback boundary control. Discrete Contin Dyn Syst, 2004, 10:289-314 [3] Barbu V, Lasiecka I, Triggiani R. Tangential boundary stabilization of Navier-Stokes equations. Mem Amer Math Soc, 2006, 181(852):107-116 [4] Raymond J P. Feedback boundary stabilization of the two-dimensional Navier-Stokes equations. SIAM J Control Optim, 2006, 45:790-828 [5] Raymond J P. Feedback boundary stabilization of the three-dimensional incomplessible Navier-Stokes equations. J Math Pures Appl, 2007, 87(9):627-669 [6] Raymond J P, Thevenet L. Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discrete Contin Dyn Syst, 2010, 27:1159-1187 [7] Badra M. Lyapunov function and local feedback boundary stabilization of the Navier-Stokes equations. SIAM J Control Optim, 2009, 48:1797-1830 [8] Badra M, Takahashi T. Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers:application to the Navier-Stokes system. SIAM J Control Optim, 2011, 49:420-463 [9] Barbu V, Wang G. Feedback stabilization of semilinear heat equations. Abstr Appl Anal, 2003, 12:697-71 [10] Barbu V, Wang G. Internal stabilization of semilinear parabolic systems. J Math Anal Appl, 2003, 285(2):387-40 [11] Barbu V, Wang G. Feedback stabilization of periodic solutions to nonlinear parabolic-like evolution systems. Indiana Univ Math J, 2005, 54(6):1521-1546 [12] Barbu V. Stabilization of a plane channel flow by wall normalcontrollers. Nonlinear Anal, Theory Methods Appl, 2007, 67(9):2573-2588 [13] Munteanu I. Normal feedback stabilization of periodic flows in a two dimensional channel. J Optim Theory Appl, 2012, 152:413-438 [14] Lefter C G. Feedback stabilization of magnetohydrodynamic equations. SIAM J Control Optim, 2011, 49:963-983 [15] Wang Y, Li S. Stabilization of vibrating beam by velocity feedback control. Acta Math Sci, 2000, 20B(2):235-244 [16] Chai S. Boundary feedback stabilization of Naghdi's model. Acta Math Sin, Eng Ser, 2005, 21(1):169-184 [17] Barbu V. Stabilization of Navier-Stokes equations by oblique boundary feedback controllers. SIAM J Control Optim, 2012, 50:2288-2307 [18] Barbu V. Boundary stabilization of equilibrium solutions to parabolic equations. IEEE Trans Automat Control, 2013, 58(9):2416-2420 [19] Munteanu I. Boundary stabilization of the phase field system by finite-dimensional feedback controllers. J Math Anal Appl, 2014, 412:964-975 [20] Wang G. Stabilization of the Boussinesq equation via internal feedback controls. Nonlinear Anal, TMA, 2003, 52:485-506 [21] Lefter A I. On the feedback stabilization of Bossinesq euqations. Annals of Alexandru Ioan Cuza UniversityMathematics, 2011, 57(2):285-310 [22] Badra M. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete Cont Dyn Syst-Series A, 2012, 32(4):1169-1208 [23] Barbu V. Stabilization of Navier-Stokes Flows. New York:Springer-Verlag, 2011 [24] Munteanu I. Stabilization of parabolic semilinear equations. Int J Control, 2016:1-20 [25] Lasiecka I, Triggiani R. Stabilization to an equilibrium of the Navier-Stokes equations with tangential action of feedback controllers. Nonlinear Anal, TMA, 2015, 121:424-446 [26] Lasiecka I, Triggiani R. Uniform stabilization with arbitrary decay rates of the Oseen equation by finitedimensional tangential localized interior and boundary controls. J Differential Equations, 2015, 79(2):340-381 [27] Raymond J P. Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions. Annales De Linstitut Henri Poincare Non Linear Analysis, 2007, 24(6):921-951 [28] Balakrishanan A V. Appplied Functional Analysis. 2nd ed. Spring-Verlag, 1981 [29] Temam R. Navier-Stokes Equations. Amsterdam:North-Holland, 1979 |
[1] | Guijuan LIN. LICHNEROWICZ-OBATA THEOREM FOR KOHN LAPLACIAN ON THE REAL ELLIPSOID [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1903-1911. |
[2] | Tao TAO, Liqun ZHANG. HÖLDER CONTINUOUS SOLUTIONS OF BOUSSINESQ EQUATIONS [J]. Acta Mathematica Scientia, 2018, 38(5): 1591-1616. |
[3] | Meiman SUN, Guozheng YAN. DISCRETENESS OF THE EXTERIOR TRANSMISSION EIGENVALUES [J]. Acta mathematica scientia,Series B, 2018, 38(1): 110-124. |
[4] | Hua CHEN, Hongge CHEN, Yirui DUAN, Xin HU. LOWER BOUNDS OF DIRICHLET EIGENVALUES FOR A CLASS OF FINITELY DEGENERATE GRUSHIN TYPE ELLIPTIC OPERATORS [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1653-1664. |
[5] | Feng DU, Chuanxi WU, Guanghan LI, Changyu XIA. UNIVERSAL INEQUALITIES FOR A HORIZONTAL LAPLACIAN VERSION OF THE CLAMPED PLATE PROBLEM ON CARNOT GROUP [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1536-1544. |
[6] | Qun HE, Fanqi ZENG, Daxiao ZENG. ON THE FIRST EIGENVALUE OF THE MEAN FINSLER-LAPLACIAN [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1162-1172. |
[7] | Zhendong LUO. A STABILIZED MIXED FINITE ELEMENT FORMULATION FOR THE NON-STATIONARY INCOMPRESSIBLE BOUSSINESQ EQUATIONS [J]. Acta mathematica scientia,Series B, 2016, 36(2): 385-393. |
[8] | YE Zhuan. A NOTE ON GLOBAL WELL-POSEDNESS OF SOLUTIONS TO BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION [J]. Acta mathematica scientia,Series B, 2015, 35(1): 112-120. |
[9] | G.SOARES. SOME FURTHER NOTES ON THE MATRIX EQUATIONS ATXB + BTXTA = C ANDATXB + BTXA = C [J]. Acta mathematica scientia,Series B, 2015, 35(1): 275-280. |
[10] | Geni GUPUR, Ehmet KASIM. FUNCTIONAL ANALYSIS METHOD FOR THE M/G/1 QUEUEING MODEL WITH OPTIONAL SECOND SERVICE [J]. Acta mathematica scientia,Series B, 2014, 34(4): 1301-1330. |
[11] | Leszek GASINSKI, Nikolaos S. PAPAGEORGIOU. POSITIVE SOLUTIONS FOR PARAMETRIC EQUIDIFFUSIVE p-LAPLACIAN EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(3): 610-618. |
[12] | WANG Jiang-Chao, ZHANG Yi-Min. A BIHARMONIC EIGENVALUE PROBLEM AND ITS APPLICATION [J]. Acta mathematica scientia,Series B, 2012, 32(3): 1213-1225. |
[13] | Mark Yasuda. SOME PROPERTIES OF COMMUTING AND ANTI-COMMUTING m-INVOLUTIONS [J]. Acta mathematica scientia,Series B, 2012, 32(2): 631-644. |
[14] | MA Bing-Qing. ESTIMATES ON THE FIRST TWO POLY-LAPLACIAN EIGENVALUES ON SPHERICAL DOMAINS [J]. Acta mathematica scientia,Series B, 2012, 32(2): 745-751. |
[15] | PU Xue-Ke, GUO Bo-Ling. GLOBAL WELL-POSEDNESS OF THE STOCHASTIC 2D BOUSSINESQ EQUATIONS WITH PARTIAL VISCOSITY [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1968-1984. |
|