Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (6): 1821-1832.
• Articles • Previous Articles Next Articles
Junhui XIE, Xiaozhong HUANG, Yiping CHEN
Received:
2017-09-02
Revised:
2018-04-23
Online:
2018-12-25
Published:
2018-12-28
Supported by:
Junhui XIE, Xiaozhong HUANG, Yiping CHEN. EXISTENCE OF MULTIPLE SOLUTIONS FOR A FRACTIONAL p-LAPLACIAN SYSTEM WITH CONCAVE-CONVEX TERM[J].Acta mathematica scientia,Series B, 2018, 38(6): 1821-1832.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Ros-Oton X, Serra J. The Dirichlet problem for the fractional Laplacian:regularity up to the boundary. J Math Pures Appl, 2014, 10:275-302 [2] Ros-Oton X, Serra J. The Pohozaev identity for the fractional Laplacian. Arch Ration Mech Anal, 2014, 213:587-628 [3] Servadei R, Valdinoci E. Mountain pass solutions for non-local elliptic operators. J Math Anal Appl, 2012, 389:887-898 [4] Servadei R, Valdinoci E. The Brezis-Nirengerg result for the fractional Laplacian. Trans Amer Math Soc, 2015, 367:67-102 [5] Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136:521-573 [6] Bucur C, Valdinoci E. Non-Local Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana 20. Springer, 2016 [7] Chen W, Deng S. The Nehari manifold for a fractional p-Laplacian system involving concave-convex nonlinearities. Nonlinear Anal, 2016, 27:80-92 [8] Wei Y, Su X. Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian. Calc Var Partial Differential Equations, 2015, 52:95-124 [9] Guo Z, Luo S, Zou W. On critical sysyems involving fractional Laplacian. J Math Anal Appl, 2017, 446:681-706 [10] Goyal S, Sreenadh K. A Nehari manifold for non-local elliptic operator with concave-convex non-linearities and sign-changing weight function. Proc Indian Acad Sci, 2015, 125:545-558 [11] Drábek P, Pohozaev S I. Positive solutions for the p-Laplacian:Application of the fibering method. Rov Soc Edinburgh Sect A, 1997, 127:703-726 [12] Brown K J, Zhang Y. The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J Differ Equ, 2003, 193:481-499 [13] Brezis H. Analyse Fonctionelle. Théorie et Applications. Paris:Masson, 1983 [14] Chen W, Deng S. The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities. Z Angew Math Phys, 2015, 66:1387-1400 [15] W Chen, Xie J. Multiple solutions to the nonhomogeneous Kirchhoff type problem involving a nonlocal operator. Diff Eq Appl, 2016, 8:367-375 [16] Xu Y, Tan Z, Sun D. Multiplicity results for a nonlinear ellptic problem involving the fractional Laplacian. Acta Math Sci, 2016, 36B:1793-1803 |
[1] | Wenbo WANG, Quanqing LI. EXISTENCE OF GROUND STATE SOLUTIONS TO HAMILTONIAN ELLIPTIC SYSTEM WITH POTENTIALS [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1966-1980. |
[2] | Luyu ZHANG, Shiwang MA. GROUND STATE TRAVELLING WAVES IN INFINITE LATTICES [J]. Acta mathematica scientia,Series B, 2016, 36(3): 782-790. |
[3] | FAN Hai-Ning, LIU Xiao-Chun. MULTIPLE POSITIVE SOLUTIONS FOR A CLASS OF QUASI-LINEAR ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT [J]. Acta mathematica scientia,Series B, 2014, 34(4): 1111-1126. |
[4] | ZHANG Jian, TANG Xian-Hua, ZHANG Wen. ON GROUND STATE SOLUTIONS FOR SUPERLINEAR DIRAC EQUATION [J]. Acta mathematica scientia,Series B, 2014, 34(3): 840-850. |
[5] | Nemat NYAMORADI, Tsing-San HSU. EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR SEMILINEAR ELLIPTIC SYSTEMS INVOLVING m CRITICAL HARDY-SOBOLEV EXPONENTS AND m SIGN-CHANGING WEIGHT FUNCTION [J]. Acta mathematica scientia,Series B, 2014, 34(2): 483-500. |
[6] | Tsing-San Hsu, Huei-Lin Li. MULTIPLICITY OF POSITIVE SOLUTIONS FOR SINGULAR ELLIPTIC SYSTEMS WITH CRITICAL SOBOLEV-HARDY AND CONCAVE EXPONENTS [J]. Acta mathematica scientia,Series B, 2011, 31(3): 791-804. |
[7] | WAN You-Yan. MULTIPLE SOLUTIONS AND THEIR LIMITING BEHAVIOR OF COUPLED NONLINEAR SCHRÖDINGER SYSTEMS [J]. Acta mathematica scientia,Series B, 2010, 30(4): 1199-1218. |
[8] | HE Xiao-Ming, ZOU Wen-Ming. INFINITELY MANY SOLUTIONS FOR A SINGULAR ELLIPTIC EQUATION INVOLVING CRITICAL SOBOLEV-HARDY EXPONENTS IN RN [J]. Acta mathematica scientia,Series B, 2010, 30(3): 830-840. |
[9] | PENG Chao-Quan, YANG Jian-Fu. MULTIPLE SOLUTIONS FOR THE SCHRÖDINGER EQUATION WITH MAGNETIC FIELD [J]. Acta mathematica scientia,Series B, 2009, 29(5): 1323-1340. |
[10] | LIU Ti-Wu, XIE Zi-Qing, CHEN Chuan-Miao. THE ACCELERATED SEARCH-EXTENSION METHOD FOR COMPUTING MULTIPLE SOLUTIONS OF SEMILINEAR PDEs [J]. Acta mathematica scientia,Series B, 2009, 29(4): 803-816. |
[11] | Xie Ziqing; Chen Chuanmiao; Xu Yun. AN IMPROVED SEARCH-EXTENTION METHOD FOR SOLVING SEMILINEAR PDES [J]. Acta mathematica scientia,Series B, 2006, 26(4): 757-766. |
[12] | Su Jiabao; Li Hong. MULTIPLICITY RESULTS FOR THE TWO-POINT BOUNDARY VALUE PROBLEMS AT RESONANCE [J]. Acta mathematica scientia,Series B, 2006, 26(1): 152-162. |
[13] | DENG Yin-Bin, LI Yi, ZHAO Xue-Jin. MULTIPLE SOLUTIONS FOR AN INHOMOGENEOUS SEMILINEAR ELLIPTIC EQUATION IN RN [J]. Acta mathematica scientia,Series B, 2003, 23(1): 1-15. |
[14] | TAN Zhong, YAO Zheng-An. THE EXISTENCE OF MULTIPLE SOLUTIONS OF p-LAPLACIAN ELLIPTIC EQUATION [J]. Acta mathematica scientia,Series B, 2001, 21(2): 203-212. |
[15] | ZHANG Zheng-Jie. MULTIPLE SOLUTIONS OF NONHOMOGENEOUS FOR RELATED CHOQUARD’S EQUATION [J]. Acta mathematica scientia,Series B, 2000, 20(3): 374-379. |
|