Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (6): 1833-1845.
• Articles • Previous Articles Next Articles
Defu CHEN, Xia YE
Received:
2017-07-17
Revised:
2017-11-13
Online:
2018-12-25
Published:
2018-12-28
Contact:
Xia YE
E-mail:yexia@jxnu.edu.cn
Supported by:
Defu CHEN, Xia YE. GLOBAL WELL-POSEDNESS FOR THE DENSITY-DEPENDENT INCOMPRESSIBLE MAGNETOHYDRODYNAMIC FLOWS IN BOUNDED DOMAINS[J].Acta mathematica scientia,Series B, 2018, 38(6): 1833-1845.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Abidi H, Hmidi T. Résultats d'existence dans des espaces critiques pour le système de la MHD inhomogène. Annales Math Blaise Pascal, 2007, 14:103-148 [2] Abidi H, Paicu M. Global existence for the magnetohydrodynamic system in critical spaces. Proc Roy Soc Edinburgh Sect A, 2008, 138(3):447-476 [3] Bergh J, Lofstrom J. Interpolation Space, An Introduction. Berlin, Heidelberg, New York:Spring-Verlag, 1976 [4] Cao C, Regmi D, Wu J. The 2D MHD equations with horizontal dissipation and horizontal magneticdiffusion. J Differential Equations, 2013, 254:2661-2681 [5] Cao C, Wu J. Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv Math, 2011, 226(2):1803-1822 [6] Desjardins B, Le Bris C. Remarks on a nonhomogeneous model of magnetohydrodynamics. Diff Integ Eqns, 1998, 11:377-394 [7] Duvaut G, Lions J L. Inéquations en thermoélasticité et magnétohydrodynamique. Arch Ration Mech Anal, 1972, 46:241-279 [8] Fan J S, Li F C, Nakamura G, Tan Z. Regularity criteria for the three-dimensional magnetohydrodynamic equations. J Differential Equations, 2014, 256:2858-2875 [9] Fan J S, Zhou Y. Uniform local well-posedness for the density-dependent magnetohydrodynamic equations. Appl Math Lett, 2011, 24:1945-1949 [10] Gerbeau J F, Le Bris C. Existence of solution for a density-dependent magnetohydrodynamic equation. Adv Diff Eqns, 1997, 2:427-452 [11] Gong H J, Li J K. Global existence of strong solutions to incompressible MHD. Commun Pure Appl Anal, 2014, 13(4):1553-1561 [12] Gui G L. Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity. J Funct Anal, 2014, 267(5):1488-1539 [13] Huang X, Wang Y. Global strong solution to the 2D nonhomogeneous incompressible MHD system. J Differential Equations, 2013, 254(2):511-527 [14] Huang X D, Wang Y. Global strong solution of 3D inhomogeneous Navier-Stokes equations with densitydependent viscosity. J Differential Equations, 2015, 259:1606-1627 [15] Lei Z. On axially symmetric incompressible magnetohydrodynamics in three dimensions. J Differential Equations, 2015, 259(7):3202-3215 [16] Li X L, Wang D H. Global strong solution to the three-dimensional density-dependent incompressible magnetohydrody-namic flows. J Differential Equations, 2011, 251(6):1580-1615 [17] Lin F H, Xu L, Zhang P. Global small solutions to 2-D incompressible MHD system. J Differ Equ, 2015, 259(10):5440-5485 [18] Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36(5):635-664 [19] Si X, Ye X. Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients. Z Angew Math Phys, 2016, 67(5):126 [20] Su M L, Qian X H, Wang J. Global existence of 2D nonhomogeneous incompressible magnetohydrodynamics with vacuum. Bound Value Probl, 2014, 2014:94, 14 pp [21] Su S B, Zhao X K. Global wellposedness of magnetohydrodynamics system with temperature-dependent viscosity. Acta Math Sci, 2018, 38B(3):898-914 [22] Wang F, Wang K Y. Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion. Nonlinear Anal Real World Appl, 2013, 14(1):526-535 [23] Wu H W. Strong solutions to the incompressible magnetohydrodynamic equations with vacuum. Comput Math Appl, 2011, 61(9):2742-2753 [24] Wang F, Wang K Y. Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion. Nonlinear Anal Real World Appl, 2013, 14(1):526-535 [25] Xu L, Zhang P. Global small solutions to three-dimensional incompressible magnetohydrodynamical system. SIAM J Math Anal, 2015, 47(1):26-65 [26] Yu H B. Global regularity to the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion in a bounded domain. Acta Math Sci, 2017, 37B(2):395-404 [27] Zhang J W. Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient. J Differential Equations, 2015, 259:1722-1742 [28] Zhang P X, Yu H B. Global regularity to the 3D incompressible MHD equations. J Math Anal Appl, 2015, 432:613-631 [29] Zhou Y, Fan J S. A regularity criterion for the density-dependent magnetohydrodynamic equations. Math Meth Appl Sci, 2010, 33:1350-1355 |
[1] | Abdul-Majeed AL-IZERI, Khalid LATRACH. NONLINEAR SEMIGROUP APPROACH TO TRANSPORT EQUATIONS WITH DELAYED NEUTRONS [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1637-1654. |
[2] | Zhipeng ZHANG. THE COMBINED INVISCID AND NON-RESISTIVE LIMIT FOR THE NONHOMOGENEOUS INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH NAVIER BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1655-1677. |
[3] | Lin HE, Yongkai LIAO, Tao WANG, Huijiang ZHAO. ONE-DIMENSIONAL VISCOUS RADIATIVE GAS WITH TEMPERATURE DEPENDENT VISCOSITY [J]. Acta Mathematica Scientia, 2018, 38(5): 1515-1548. |
[4] | Haiping NIU, Shu WANG. SOLUTIONS TO QUASILINEAR HYPERBOLIC CONSERVATION LAWS WITH INITIAL DISCONTINUITIES [J]. Acta mathematica scientia,Series B, 2018, 38(1): 203-219. |
[5] | Dongcheng YANG. THE VLASOV-MAXWELL-FOKKER-PLANCK SYSTEM WITH RELATIVISTIC TRANSPORT IN THE WHOLE SPACE [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1237-1261. |
[6] | Haibo YU. GLOBAL REGULARITY TO THE 2D INCOMPRESSIBLE MHD WITH MIXED PARTIAL DISSIPATION AND MAGNETIC DIFFUSION IN A BOUNDED DOMAIN [J]. Acta mathematica scientia,Series B, 2017, 37(2): 395-404. |
[7] | Mohammed D. KASSIM, Khaled M. FURATI, Nasser-eddine TATAR. NON-EXISTENCE FOR FRACTIONALLY DAMPED FRACTIONAL DIFFERENTIAL PROBLEMS [J]. Acta mathematica scientia,Series B, 2017, 37(1): 119-130. |
[8] | Abdul-Majeed AL-IZERI, Khalid LATRACH. WELL-POSEDNESS OF A NONLINEAR MODEL OF PROLIFERATING CELL POPULATIONS WITH INHERITED CYCLE LENGTH [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1225-1244. |
[9] | Lusheng WANG, Qinghua XIAO, Linjie XIONG, Huijiang ZHAO. THE VLASOV-POISSON-BOLTZMANN SYSTEM NEAR MAXWELLIANS FOR LONG-RANGE INTERACTIONS [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1049-1097. |
[10] | GENG Shi-Feng, CHEN Guo-Wang. GLOBAL EXISTENCE OF SOLUTIONS OF CAUCHY PROBLEM FOR GENERALIZED BBM-BURGERS EQUATION [J]. Acta mathematica scientia,Series B, 2013, 33(4): 1007-1023. |
[11] | XU Run-Zhang, DING Yun-Hua. GLOBAL SOLUTIONS AND FINITE TIME BLOW UP FOR DAMPED KLEIN-GORDON EQUATION [J]. Acta mathematica scientia,Series B, 2013, 33(3): 643-652. |
[12] | GUO Hong-Xia, CHEN Guo-Wang. A NOTE ON “THE CAUCHY PROBLEM FOR COUPLED IMBQ EQUATIONS” [J]. Acta mathematica scientia,Series B, 2013, 33(2): 375-392. |
[13] | XIE Jun-Hui, DAI Qiu-Yi, LIU Fang. THRESHOLD RESULT FOR SEMILINEAR PARABOLIC EQUATIONS WITH INDEFINITE NON-HOMOGENEOUS TERM [J]. Acta mathematica scientia,Series B, 2012, 32(6): 2302-2314. |
[14] | YOU Shu-Jun, GUO Bai-Ling, NING Xiao-Qi. INITIAL BOUNDARY VALUE PROBLEM FOR MODIFIED ZAKHAROV EQUATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(4): 1455-1466. |
[15] | ZHANG Jian-Wen. THE INVISCID AND NON-RESISTIVE LIMIT IN THE CAUCHY PROBLEM FOR 3-D NONHOMOGENEOUS INCOMPRESSIBLE MAGNETO-HYDRODYNAMICS [J]. Acta mathematica scientia,Series B, 2011, 31(3): 882-896. |
|