Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (4): 1370-1392.
• Articles • Previous Articles Next Articles
Wenlong SUN, Yeping LI
Received:
2016-05-17
Revised:
2017-09-29
Online:
2018-08-25
Published:
2018-08-25
Contact:
Wenlong SUN,E-mail:wenlongsun1988@163.com
E-mail:wenlongsun1988@163.com
Supported by:
Wenlong SUN, Yeping LI. PULLBACK EXPONENTIAL ATTRACTORS FOR THE NON-AUTONOMOUS MICROPOLAR FLUID FLOWS[J].Acta mathematica scientia,Series B, 2018, 38(4): 1370-1392.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physics. Providence:Amercian Mathematical Society, 2002 |
[2] | Chen J, Chen Z, Dong B. Existence of H2-global attractors of two-dimensional micropolar fluid flows. J Math Anal Appl, 2006, 322:512-522 |
[3] | Chen Z, Price W G. Decay estimates of linearized micropolar fluid flows in R3 space with applications to L3-strong solutions. Internat J Engrg Sci, 2006, 44:859-873 |
[4] | Chen J, Dong B, Chen Z. Uniform attractors of non-homogeneous micropolar fluid flows in non-smooth domains. Nonlinearity, 2007, 20:1619-1635 |
[5] | Chen G. Pullback attractor for non-homogeneous micropolar fluid flows in non-smooth domains. Nonlinear Anal, 2009, 10:3018-3027 |
[6] | Dong B, Chen Z. Global attractors of two-dimensional micropolar fluid flows in some unbounded domains. Appl Math Comp, 2006, 182:610-620 |
[7] | Dong B, Chen Z. Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows. Discrete Contin Dyn Syst, 2009, 23:765-784 |
[8] | Dong B, Zhang Z. Global regularity of the 2D micropolar fluid flows with zero angular viscosity. J Differential Equations, 2010, 249:200-213 |
[9] | Dong B, Zhang W. On the regularity criterion for three-dimensional micropolar fluid flows in Besov spaces. Nonlinear Analysis, 2010, 73:2334-2341 |
[10] | Dong B, Li J., Wu J. Global well-posedness and large-time decay for the 2D micropolar equations. J Differential Equations, 2017, 262:3488-3523 |
[11] | Eringen A C. Theory of micropolar fluids. J Math Mech, 1966, 16:1-18 |
[12] | Förste J. On the theory of micropolar fluids. Adv Mechanics, 1979, 2(2):81-100 |
[13] | Lucas C F Ferreira, Juliana C Precioso. Existence of solutions for the 3D-micropolar fluid system with initial data in Besov-Morrey spaces. Z Angew Math Phys, 2013, 64:1699-1710 |
[14] | Galdi P, Rionero S. A note on the existence and uniqueness of the micropolar fluid equations. Int J Engng Sci, 1977, 15:105-108 |
[15] | Giga Y, Sohr H. Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J Funct Anal, 1991, 102:71-94 |
[16] | Lukaszewicz G. Micropolar Fluids:Theory and Applications. Boston:Birkhäuser, 1999 |
[17] | Lukaszewicz G. Long time behavior of 2D micropolar fluid flows Math Comput Modelling, 2001, 34:487-509 |
[18] | Lukaszewicz G, Sadowski W. Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains. Z Angew Math Phys, 2004, 55:247-257 |
[19] | Li Y R, Guo B L. Random attractors of boussinesq equations with multiplicative noise. Acta Math Sin, English Ser, 2009, 25:481-490 |
[20] | Lukaszewicz G, Tarasińska A. On H1-pullback attractors for nonautonomous micropolar fluid equations in a bounded domain. Nonlinear Anal, 2009, 71:782-788 |
[21] | Langa J A, Miranville A, Real J. Pullback exponential attractors. Discrete Contin Dynam Systems, 2010, 26:1329-1357 |
[22] | Liang Y Y, Li C J, Zhao C D. Compact kernel sections and Kolmogorov entropy for the lattice Zakharov equations with a quantum correction. Acta Math Sci, 2014, 34A(5):1203-1218 |
[23] | Nowakowski B. Long-time behavior of micropolar fluid equations in cylindrical domains. Nonlinear AnalRWA, 2013, 14:2166-2179 |
[24] | Sun W, Li Y. Trajectory attractor and global attractor for Keller-Segel-Stokes model with arbitrary porous medium diffusion. Topol Methods Nonlinear Anal, 2017, 50:581-602 |
[25] | Sun W. Micropolar fluid flows with delay on 2D unbounded domains. J Appl Anal Comput, 2018, 8:356-378 |
[26] | Sun W, Li Y. Asymptotic behavior of pullback attractors for non-autonomous micropolar fluid flows in 2D unbounded domains. Electronic Journal of Differential Equations, 2018, 2018:1-21 |
[27] | Xue L. Well posedness and zero microrotation viscosity limit of the 2D micropolar fluid equations. Math Methods Appl Sci, 2011, 34:1760-1777 |
[28] | Zhao C, Zhou S, Lian X. H1-uniform attractor and asymptotic smoothing effect of solutions for a nonautonomous micropolar fluid flow in 2D unbounded domains. Nonlinear Anal-RWA, 2008, 9:608-627 |
[29] | Zhou S, Lou J. Uniform exponential attractor for nonautonomous partly dissipative lattice dynamical system. Acta Math Sin, English Ser, 2014, 30:1381-1394 |
[30] | Zhao C, Sun W, Hsu C. Pullback dynamical behaviors of the non-autonomous micropolar fluid flows. Dynamics of PDE, 2015, 12:265-288 |
[31] | Zhao C, Sun W. Global well-posedness and pullback attractors for a two-dimensional non-autonomous micropolar fluid flows with infinite delays. Commun Math Sci, 2017, 15:97-121 |
[32] | Zhou G, Liu G, Sun W. H2-boundedness of the pullback attractor of the micropolar fluid flows with infinite delays. Boundary Value Problem, 2017, DOI:10.1186/s13661-017-0866-x |
[1] | Nermina MUJAKOVIC, Nelida CRNJARIC-ZIC. GLOBAL SOLUTION TO 1D MODEL OF A COMPRESSIBLE VISCOUS MICROPOLAR HEAT-CONDUCTING FLUID WITH A FREE BOUNDARY [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1541-1576. |
[2] | Xiaolin Li, James Glimm, Xiangmin Jiao, Charles Peyser, Yanhong Zhao. STUDY OF CRYSTAL GROWTH AND SOLUTE PRECIPITATION THROUGH |FRONT TRACKING METHOD [J]. Acta mathematica scientia,Series B, 2010, 30(2): 377-390. |
[3] | Dai Zhengde, Qu Chaochun. THE INERTIAL SETS OF EQUATION FOR THE FLOW AND MAGNETIC FIELD WITHIN THE EARTH [J]. Acta mathematica scientia,Series B, 1996, 16(S1): 143-152. |
|