Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (4): 1361-1369.
• Articles • Previous Articles Next Articles
Yi QIN, Yanren HOU
Received:
2016-06-08
Revised:
2017-04-30
Online:
2018-08-25
Published:
2018-08-25
Supported by:
Subsidized by NSFC (11571274 and 11171269) and the Ph.D. Programs Foundation of Ministry of Education of China (20110201110027).
Yi QIN, Yanren HOU. OPTIMAL ERROR ESTIMATES OF A DECOUPLED SCHEME BASED ON TWO-GRID FINITE ELEMENT FOR MIXED NAVIER-STOKES/DARCY MODEL[J].Acta mathematica scientia,Series B, 2018, 38(4): 1361-1369.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Arbogast T, Brunson D S. A computational method for approximating a Darcy-Stokes system poverning a vuggy porous medium. Comput Geosci, 2007, 11:207-218 |
[2] | Arbogast T, Gomez M S M. A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media. Comput Geosci, 2009, 13(3):331-348 |
[3] | Arbogast T, Lehr H L. Homogenization of a Darcy-Stokes system modeling vuggy porous media. Comput Geosci, 2006, 10(3):291-302 |
[4] | Cao Y, Gunzburger M, Hu X, Hua F, Wang X, Zhao W. Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J Numer Anal, 2010, 47(6):4239-4256 |
[5] | Cao Y, Gunzburger M, Hua F, Wang X. Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Commun Math Sci, 2010, 8(1):1-25 |
[6] | Mu M, Xu J C. A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J Numer Anal, 2007, 45:1801-1813 |
[7] | Ervin V J, Jenkins E W, Sun S. Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J Numer Anal, 2009, 47(2):929-952 |
[8] | Moraiti M. On the quasistatic approximation in the Stokes-Darcy model of groundwater-surface water flows. J Math Anal Appl, 2012, 394(2):796-808 |
[9] | Cai M, Mu M, Xu J. Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM J Numer Anal, 2009, 47(5):3325-3338 |
[10] | Badea L, Discacciati M, Quarteroni A. Numerical analysis of the Navier-Stokes/Darcy coupling. Numerische Mathematik, 2010, 115(2):195-227 |
[11] | Çeşmelioǧlu A, Riviére B. Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow. J Numer Mathem, 2008, 16(4):249-280 |
[12] | Çeşmelioǧlu A, Riviére B. Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J Sci Comput, 2009, 40(1/3):115-140 |
[13] | Chidyagwai P, Riviére B. On the solution of the coupled Navier-Stokes and Darcy equations. Comput Methods Appl Mech Engin, 2009, 198(47/48):3806-3820 |
[14] | Girault V, Riviére B. DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-JosephSaffman interface condition. SIAM J Numer Anal, 2009, 47(3):2052-2089 |
[15] | Hou Y. Optimal Error Estimates of A Decoupled Scheme Based on Two-Grid Finite Element for Mixed Stokes-Darcy Model. Appl Math Lett, 2016, 57:90-96 |
[16] | Beavers G, Joseph D. Boundary conditions at a naturally permeable wall. J Fluid Mech, 1967, 30:197-207 |
[17] | Discacciati M, Miglio E, Quarteroni A. Mathematical and numerical models for coupling surface and groundwater flows. Appl Numer Math, 2002, 43:57-74 |
[18] | Jäger W, Mikelíc A. On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J Appl Math, 2000, 60:1111-1127 |
[19] | Layton W. A two-level discretization method for the Navier-Stokes equations. Comput Math Appl, 1993, 26:33-38 |
[20] | Nield D A, Bejan A. Convection in Porous Media. New York:Springer-Verlag, 1999 |
[21] | Saffman P. On the boundary condition at the surface of a porous media. Stud Appl Math, 1971, 50:93-101 |
[22] | Cai M C. Modelling and Numerical Simulation for the Coupling of Surface Flow with Subsurface Flow[D]. HongKong:The Hong Kong University of Science and Technology, 2008 |
[23] | Discacciati M, Quarteroni A. Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput Vis Sci, 2004, 6:93-103 |
[24] | Quarteroni A, Valli A. Domain Decomposition Methods for Partial Differential Equations. Oxford:Oxford University Press, 1999 |
[25] | Shan L, Zheng H B, Layton W J. A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model. Numer Methods Partial Differ Eqns, 2013, 29:549-583 |
[26] | Shan L, Zheng H B. Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with the Beavers-Joseph interface conditions. SIAM J Numer Anal, 2013, 51:813-839 |
[27] | Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York:Springer-Verlag, 1991 |
[28] | Zuo L, Hou Y. A decoupling two-grid algorithm for the mixed Stokes-Darcy model with the Beavers-Joseph interface condition. Numerical Methods for Partial Differential Equations, 2014, 30(3):1066-1082 |
[29] | Zuo L, Hou Y. A two-grid decoupling method for the mixed Stokes-Darcy model. J Comput Appl Math, 2015, 275:139-147 |
[30] | Zuo L, Hou Y. Numerical analysis for thr mixed Navier-Stokes and Darcy problem with the Beavers-Joseph interface condition. Numer Methods Partial Differ Equ, 2015, 31(4):1009-1030 |
[31] | Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Berlin:Springer-Verlag, 1986 |
[32] | Du G, Zuo L. Local and parallel finite element method for the mixed Navier-Stokes/Darcy model with Beavers-Joseph interface conditions. Acta Methematica Scientia, 2017, 37B(5):1331-1347 |
|