[1] Calabi E. Extremal Kähler metrics//Yau S T, Seminars on Differential Geometry. Tokyo:Princeton and Univ of Tokyo Press, 1982:259-290 [2] Candelas P, de La Ossa X C. Comments on conifold. Nucl Phys B, 1990, 342:246-248 [3] Cao H -D. Existence Of Gradient Kähler-Ricci Solitons//Chow B, Gulliver R, Levy S, Sullivan J. Elliptic and Parabolic Methods in Geometry, 1996:1-16 [4] Cao H -D. Limits of solutions to the Kähler-Ricci flow. J Differ Geom, 1997, 45(2):257-272 [5] Cao H -D. Geometry of Ricci solitons. Chin Ann Math, 2006, 27B(1):121-142 [6] Cao H -D, Zhou D T. On complete gradient shrinking Ricci solitons. J Differ Geom, 2009, 85(2):175-185 [7] Cao H -D. Recent progress on Ricci solitons. Advanced Lectures in Mathematics, 2010, 11:1-38 [8] Dancer A S, Wang M -Y. On Ricci solitons of cohomogeneity one. arXiv:08020759 [9] Duan X -J, Zhou J. Rotationally symmetric pseudo-Kähler-Einstein metrics. Front Math China, 2011, 6(3):391-410 [10] Duan X -J, Zhou J. Rotationally symmetric pseudo-Kähler metrics of constant scalar curvatures. Sci China Math, 2011, 54(5):925-938 [11] Feldman M, Ilmanen T, Knopf D. Rotationaly symmetric shringking and expanding gradient Kähle-Ricci solitons. J Differ Geom, 2003, 65:169-209 [12] Feitosa F E S, Freitas A A, Gomes J N V, Pina R S. On the construction of gradient Ricci soliton warped product. Nonlinear Anal TMA, 2017, 161:30-43 [13] Hamilton R. Three-manifolds with positive Ricci curvature. J Differ Geom, 1982, 17:255-306 [14] Hamilton R S. The formation of singularities in the Ricci flow//Combridge M A. J Differ Geom, 1995, 2:7-136 [15] Koiso N. On rotionally symmetric Hamilton's equation for Kähler-Einstein metrics//Recent Topics in Diff Anal Geom, Adv Studies in Pure Math, 18-I. Boston, MA:Academic Press, 1990:327-337 [16] Kotschwar B. On rotationally invariant shrinking gradient Ricci solitons. Pacific J Math, 2008, 236(1):70-85 [17] Li C. On rotationally symmetric Kähler-Ricci solitons. Mathematics, 2010, arXiv:10044049 [18] Petersen P, Wylie W. On the classifiation of gradient Ricci solitons. Geom Topol, 2008, 14(4):2277-2300 [19] Petersen P, Wylie W. On gradient Ricci solitons with symmetry. Proc Amer Math Soc, 2010, 137(2):2085-2092 [20] Su Y H, Zhang K. On the Kähler-Ricci solitons with vanishing Bochner-Weyl tensor. Acta Math Sci, 2012, 32B(3):1239-1244 [21] Yang B. A characterization of Koiso's typed solitons. Mathematics, 2008. arXiv:math.DG/0802.0300 |