Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (1): 1-33.doi: 10.1016/S0252-9602(17)30115-7
• Articles • Next Articles
Jun LIU, Dachun YANG, Wen YUAN
Received:
2016-09-18
Revised:
2017-08-14
Online:
2018-02-25
Published:
2018-02-25
Contact:
Dachun YANG
E-mail:dcyang@bnu.edu.cn
Supported by:
The second author was supported by the National Natural Science Foundation of China (11571039 and 11671185). The third author was supported by the National Natural Science Foundation of China (11471042).
Jun LIU, Dachun YANG, Wen YUAN. LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY-LORENTZ SPACES[J].Acta mathematica scientia,Series B, 2018, 38(1): 1-33.
[1] Abu-Shammala W, Torchinsky A. The Hardy-Lorentz spaces Hp,q(Rn). Studia Math, 2007, 182:283-294 [2] Aguilera N, Segovia C. Weighted norm inequalities relating the gλ* and the area functions. Studia Math, 1977, 61:293-303 [3] Almeida A, Caetano A M. Generalized Hardy spaces. Acta Math Sci Ser B Engl Ed, 2010, 26:1673-1692 [4] Álvarez J. Hp and weak Hp continuity of Calderón-Zygmund type operators//Fourier Analysis, Lecture Notes in Pure and Appl Math, 157. New York:Dekker, 1994:17-34 [5] Álvarez J. Continuity properties for linear commutators of Calderón-Zygmund operators. Collect Math, 1988, 49:17-31 [6] Álvarez J, Milman M. Hp continuity properties of Calderón-Zygmund-type operators. J Math Anal Appl, 1986, 118:63-79 [7] Aoki T. Locally bounded linear topological spaces. Proc Imp Acad Tokyo, 1942, 18:588-594 [8] Bennett C, Sharpley R. Interpolation of Operators, Pure and Applied Math, 129. Orlando, FL:Academic Press, 1988 [9] Bergh J, Löfström J. Interpolation Spaces:An Introduction, Grundlehren der Mathematischen Wissenschaften, 223. Berlin-New York:Springer-Verlag, 1976 [10] Bownik M. Anisotropic Hardy Spaces and Wavelets. Mem Amer Math Soc, 2003, 164(781):122 pp [11] Bownik M. Anisotropic Triebel-Lizorkin spaces with doubling measures. J Geom Anal, 2007, 17:387-424 [12] Bownik M, Ho K-P. Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans Amer Math Soc, 2006, 358:1469-1510 [13] Bownik M, Li B, Yang D, Zhou Y. Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ Math J, 2008, 57:3065-3100 [14] Bownik M, Li B, Yang D, Zhou Y. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math Nachr, 2010, 283:392-442 [15] Burkholder D L, Gundy R F, Silverstein M L. A maximal characterization of the class Hp. Trans Amer Math Soc, 1971, 157:137-153 [16] Calderón A-P. Intermediate spaces and interpolation, the complex method. Studia Math, 1964, 24:113-190 [17] Calderón A-P. Commutators of singular integral operators. Proc Nat Acad Sci, 1965, 53:1092-1099 [18] Calderón A-P. An atomic decomposition of distributions in parabolic Hp spaces. Adv Math, 1977, 25:216-225 [19] Calderón A-P, Torchinsky A. Parabolic maximal functions associated with a distribution. Adv Math, 1975, 16:1-64 [20] Calderón A-P, Torchinsky A. Parabolic maximal functions associated with a distribution, Ⅱ. Adv Math, 1977, 24:101-171 [21] Christ M. A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq Math, 1990, 60/61:601-628 [22] Coifman R R, Weiss G. Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, (French) Étude de certaines intégrales singulières, Lecture Notes in Mathematics, Vol 242. Berlin-New York:Springer-Verlag, 1971 [23] Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83:569-645 [24] Cwikel M. The dual of weak Lp. Ann Inst Fourier (Grenoble), 1975, 25:81-126 [25] Cwikel M, Fefferman C. Maximal seminorms on weak L1. Studia Math, 1980/81, 69:149-154 [26] Cwikel M, Fefferman C. The canonical seminorm on weak L1. Studia Math, 1984, 78:275-278 [27] Ding Y, Lan S. Anisotropic weak Hardy spaces and interpolation theorems. Sci China Ser A, 2008, 51:1690-1704 [28] Ding Y, Lu S. Hardy spaces estimates for multilinear operators with homogeneous kernels. Nagoya Math J, 2003, 170:117-133 [29] Ding Y, Lu S, Shao S. Integral operators with variable kernels on weak Hardy spaces. J Math Anal Appl, 2006, 317:127-135 [30] Ding Y, Lu S, Xue Q. Parametrized Littlewood-Paley operators on Hardy and weak Hardy spaces. Math Nachr, 2007, 280:351-363 [31] Fefferman C, Rivière N M, Sagher Y. Interpolation between Hp spaces:the real method. Trans Amer Math Soc, 1974, 191:75-81 [32] Fefferman C, Stein E M. Some maximal inequalities. Amer J Math, 1971, 93:107-115 [33] Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129:137-193 [34] Fefferman R. Ap weights and singular integrals. Amer J Math, 1988, 110:975-987 [35] Fefferman R, Soria F. The spaces weak H1. Studia Math, 1987, 85:1-16 [36] Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups, Mathematical Notes 28. Princeton, NJ:Princeton University Press; Tokyo:University of Tokyo Press, 1982 [37] Frazier M, Jawerth B, Weiss G. Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series in Mathematics 79. Washington, DC:Conference Board of the Mathematical Sciences; Providence, RI:American Mathematical Society, 1991 [38] Goginava U, Nagy K. Weak type inequality for the maximal operator of Walsh-Kaczmarz-Marcinkiewicz means. Acta Math Sci, 2016, 36B(2):359-370 [39] Grafakos L. Hardy space estimates for multilinear operators, Ⅱ. Mat Iberoamericana, 1992, 8:69-92 [40] Grafakos L. Classical Fourier Analysis//Graduate Texts in Mathematics 249, 3rd ed. New York:Springer, 2014 [41] Grafakos L, Liu L, Yang D. Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math Scand, 2009, 104:296-310 [42] Hunt R. On L(p, q) spaces. Enseignement Math, 1966, 12:249-276 [43] Ioku N, Ishige K, Yanagida E. Sharp decay estimates in Lorentz spaces for nonnegative Schrödinger heat semigroups. J Math Pures Appl, 2015, 103(9):900-923 [44] Li B, Bownik M, Yang D. Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces. J Funct Anal, 2014, 266:2611-2661 [45] Li B, Bownik M, Yang D, Yuan W. Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces. Positivity, 2012, 16:213-244 [46] Li B, Bownik M, Yang D, Yuan W. A mean characterization of weighted anisotropic Besov and TriebelLizorkin spaces. Z Anal Anwend, 2014, 33:125-147 [47] Li B, Fan X, Yang D. Littlewood-Paley characterizations of anisotropic Hardy spaces of Musielak-Orlicz type. Taiwanese J Math, 2015, 19:279-314 [48] Liang Y, Huang J, Yang D. New real-variable characterizations of Musielak-Orlicz Hardy spaces. J Math Anal Appl, 2012, 395:413-428 [49] Lions J-L, Peetre J. Sur une classe d'espaces d'interpolation (French). Inst Hautes études Sci Publ Math, 1964, 19:5-68 [50] Littlewood J E, Paley R E A C. Theorems on Fourier series and power series. J London Math Soc, 1931, 6:230-233 [51] Liu H. The weak Hp spaces on homogeneous groups//Harmonic Analysis, Tianjin, 1988, Lecture Notes in Math, 1494. Berlin:Springer, 1991:113-118 [52] Liu J, Yang D, Yuan W. Anisotropic Hardy-Lorentz spaces and their applications. Sci China Math, 2016, 59:1669-1720 [53] Lorentz G G. Some new functional spaces. Ann Math, 1950, 51(2):37-55 [54] Lorentz G G. On the theory of spaces Λ. Pacific J Math, 1951, 1:411-429 [55] Lu S-Z. Four Lectures on Real Hp Spaces. River Edge, NJ:World Scientific Publishing Co Inc, 1995 [56] Merker J, Rakotoson J-M. Very weak solutions of Poisson's equation with singular data under Neumann boundary conditions. Calc Var Partial Differ Equ, 2015, 52:705-726 [57] Muscalu C, Tao T, Thiele C. A counterexample to a multilinear endpoint question of Christ and Kiselev. Math Res Lett, 2003, 10:237-246 [58] Oberlin R, Seeger A, Tao T, Thiele C, Wright J. A variation norm Carleson theorem. J Eur Math Soc, 2012, 14:421-464 [59] Parilov D. Two theorems on the Hardy-Lorentz classes H1,q. (Russian) Zap Nauchn Sem S-Peterburg. Otdel Mat Inst Steklov, (POMI) 2005, 327, Issled po Linein Oper i Teor Funkts, 33:150-167, 238; translation in J Math Sci, (NY) 2006, 139:6447-6456 [60] Peetre J. Nouvelles propriétés d'espaces d'interpolation. C R Acad Sci Paris, 1963, 256:1424-1426 [61] Phuc N C. The Navier-Stokes equations in nonendpoint borderline Lorentz spaces. J Math Fluid Mech, 2015, 17:741-760 [62] Rolewicz S. On a certain class of linear metric spaces. Bull Acad Polon Sci Cl Trois, 1957, 5:471-473 [63] Sadosky C. Interpolation of Operators and Singular Integrals. Marcel Dekker Inc, 1976 [64] Schmeisser H-J, Triebel H. Topics in Fourier Analysis and Function Spaces. Chichester:John Wiley and Sons Ltd, 1987 [65] Seeger A, Tao T. Sharp Lorentz space estimates for rough operators. Math Ann, 2001, 320:381-415 [66] Stein E M. Harmonic Analysis:Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43. Princeton, NJ:Princeton University Press, 1993 [67] Stein E M, Weiss G. On the theory of harmonic functions of several variables, I:The theory of Hp spaces. Acta Math, 1960, 103:25-62 [68] Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series 32. Princeton, NJ:Princeton University Press, 1971 [69] Tao T, Wright J. Endpoint multiplier theorems of Marcinkiewicz type. Rev Mat Iberoamericana, 2001, 17:521-558 [70] Triebel H. Theory of Function Spaces. Basel:Birkhäuser Verlag, 1983 [71] Triebel H. Theory of Function Spaces, Ⅱ. Basel:Birkhäuser Verlag, 1992 [72] Triebel H. Theory of Function Spaces, Ⅲ. Basel:Birkhäuser Verlag, 2006 [73] Wang H. Boundedness of several integral operators with bounded variable kernels on Hardy and weak Hardy spaces. Internat J Math, 2013, 24(12):22 pp [74] Yang Q, Chen Z, Peng L. Uniform characterization of function spaces by wavelets. Acta Math Sci, 2005, 25A(1):130-144 |
[1] | SHAO Jing-Jing, HAN Ya-Zhou. SZEGÖ|TYPE FACTORIZATION THEOREM FOR NONCOMMUTATIVE HARDY-LORENTZ SPACES [J]. Acta mathematica scientia,Series B, 2013, 33(6): 1675-1684. |
[2] | REN Yan-Bo, GUO Tie-Xin. WEAK ATOMIC DECOMPOSITIONS OF MARTINGALE HARDY-LORENTZ SPACES AND APPLICATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(3): 1157-1166. |
[3] | HAN Ya-Zhou, Turdebek N. Bekjan. THE DUAL OF NONCOMMUTATIVE LORENTZ SPACES [J]. Acta mathematica scientia,Series B, 2011, 31(5): 2067-2080. |
[4] | Ayse Sandikci A. Turan G¨urkanli. GABOR ANALYSIS OF THE SPACES {\boldmath M( p, q, w) ({Rd) AND S( p, q, r, w, ω) (Rd) [J]. Acta mathematica scientia,Series B, 2011, 31(1): 141-158. |
[5] | FAN Li-Ping, JIAO Yong, LIU Pei-De. LORENTZ MARTINGALE SPACES AND INTERPOLATION [J]. Acta mathematica scientia,Series B, 2010, 30(4): 1143-1153. |
[6] | CHEN Li-Gong, LIU Pei-De. THE DYADIC DERIVATIVE AND CESÀRO MEAN OF BANACH-VALUED MARTINGALES [J]. Acta mathematica scientia,Series B, 2009, 29(2): 265-275. |
[7] | Hakan Avci; A. Turan Gurkanli. MULTIPLIERS AND TENSOR PRODUCTS OF L(p, q) LORENTZ SPACES [J]. Acta mathematica scientia,Series B, 2007, 27(1): 107-116. |
[8] | Cenap Duyar A. Turan G¨urkanli. MULTIPLIERS AND RELATIVE COMPLETION IN WEIGHTED LORENTZ SPACES [J]. Acta mathematica scientia,Series B, 2003, 23(4): 467-. |
|