[1] Bogovskii M E. Solution of some vector analysis problems connected with operators div and grad. Trudy Sem S L Sobolev, 1980, 80: 5-40
[2] Ding S J, Huang J R, Wen H Y, Zi R Z. Incompressible limit of the compressible nematic liquid crystal flow. J Funct Anal, 2013, 264: 1711-1756
[3] Ding S J, Lin J Y, Wang C Y, Wen H Y. Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete Contin Dyn Syst Ser B, 2011, 15: 357-371
[4] Feireisl E. Propagation of oscillations, complete trajectories and attractors for compressible flows. Nonlinear Differ Equ Appl, 2003, 10: 33-55
[5] Feireisl E, Petzltová H. Asymptotic compactness of globally trajectories generated by the Navier-Stokes equations of a compressible fluid. J Differential Equations, 2001, 173: 390-409
[6] Feireisl E, Petzltová H. Bounded absorbing sets for the Navier-Stokes equations of compressible fluid. Comm Partial Differential Equations, 2001, 26: 1133-1144
[7] Feireisl E, Petzltová H. On compactness of solutions to the Navier-Stokes equations of compressible flow. J Differential Equations, 2000, 163: 57-75
[8] Feireisl E, Petzltová H. On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow. Commun Partial Differential Equations, 1999, 25: 755-767
[9] Galdi G P. An introduction to the mathematical theory of the Navier-Stokes Equatons, Vol 1. New York: Spinger-Verlag, 1994
[10] Guo R C, Jiang F, Yin J P. A note on complete bounded trajectories and attractors for compressible self-gravitating fluids. Nonlinear Anal, 2012, 75: 1933-1944
[11] Hineman J, Wang C Y. Well-posedness of Nematic liquid crystal flow in Luloc3(R3). Arch Ration Mech Anal, 2013, 210: 177-218
[12] Hu X, Wu H. Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J Math Anal, 2013, 45: 2678-2699
[13] Huang T, Wang C Y, Wen H Y. Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch Ration Mech Anal, 2012, 204: 285-311
[14] Huang T, Wang C Y, Wen H Y. Strong solutions of the compressible nematic liquid crystal flow. J Differ- ential Equations, 2012, 252: 2222-2265
[15] Jiang F, Jiang S, Wang D H. Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch Ration Mech Anal, 2014, 214: 1100-1150
[16] Jiang F, Jiang S, Wang D H. On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain. J Funct Anal, 2013, 265: 3369-3397
[17] Jiang F, Tan Z. Complete bounded trajectories and attractors for compressible barotropic self-gravitating fluid. J of Math Anal Appl, 2009, 351: 408-427
[18] Jiang F, Tan Z. Global weak solution to the flow of liquid crystals system. Math Meth Appl Sci, 2009, 32: 2243-2266
[19] Jiang F, Tan Z, Yan Q L. Asymptotic compactness of global trajectories generated by the Navier-Stokes- Poisson equations of a compressible fluid. Nonlinear Differential Equations and Appl, 2009, 16: 355-380
[20] Li X L, Wang D H. Global solution to the incompressible flow of liquid crystals. J Differential Equations, 2012, 252: 745-767
[21] Lin F H. Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena. Comm Pure Appl Math, 1989, 42: 789-814
[22] Lin F H, Lin J Y, Wang C Y. Liquid crystal flows in two dimensions. Arch Ration Mech Anal, 2011, 197: 297-336
[23] Lin F H, Liu C. Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm Pure Appl Math, 1995, 48(5): 501-537
[24] Lin F H, Liu C. Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discrete Contin Dyn Syst, 1996, 2: 1-23
[25] Lin J Y, Ding S J. On the well-posedness for the heat flow of harmonic maps and the hydrodynamic flow of nematic liquid crystals in critical spaces. Math Meth Appl Sci, 2012, 35: 158-173
[26] Lions P. Mathematical Topics in Fluid Mechanics: Compressible Models. Oxford: Oxford University Press, 1998
[27] Liu X G, Zhang Z Y. Lp existence of the flow of liquid crystals system. Chinese Ann Math Ser A, 2009, 30: 1-20
[28] Málek J, Ne?as J. A finite-dimensional attractor for the three dimensional flow of incompressible fluid. J Differential Equations, 1996, 127: 498-518
[29] Novotny A, Straškraba I. Introduction to the Mathematical Theory of Compressible Flow. Oxford: Oxford University Press, 2004
[30] Wang C Y. Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch Ration Mech Anal, 2011, 200: 1-19
[31] Wang D H, Yu C. Global weak solution and large-time behavior for the compressible flow of liquid crystals. Arch Ration Mech Anal, 2012, 204: 881-915
[32] Chen Q, Tan Z, Wu G C. LPS's criterion for incompressible nematic liquid crystal flows. Acta Mathematica Scientia, 2014, 34B(4): 1072-1080
[33] Hao Y X, Liu X G. Incompressible limit of a compressible liquid crystals system. Acta Mathematica Scientia, 2013, 33B(3): 781-796
[34] Zhou H, Wang H Y. Stability of equilibria of nematic liquid crystalline polymers. Acta Mathematica Scientia, 2011, 31B(6): 2289-2304 |